The path space of a higher-rank graph
Studia Mathematica, Tome 204 (2011) no. 2, pp. 155-185 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We construct a locally compact Hausdorff topology on the path space of a finitely aligned $k$-graph ${\mit\Lambda}$. We identify the boundary-path space $\partial{\mit\Lambda}$ as the spectrum of a commutative $C^*$-subalgebra $D_{\mit\Lambda}$ of $C^*({\mit\Lambda})$. Then, using a construction similar to that of Farthing, we construct a finitely aligned $k$-graph $\widetilde{\mit\Lambda}$ with no sources in which ${\mit\Lambda}$ is embedded, and show that $\partial{\mit\Lambda}$ is homeomorphic to a subset of $\partial\widetilde{\mit\Lambda}$. We show that when ${\mit\Lambda}$ is row-finite, we can identify $C^*({\mit\Lambda})$ with a full corner of $C^*(\widetilde{\mit\Lambda})$, and deduce that $D_{\mit\Lambda}$ is isomorphic to a corner of $D_{\widetilde{\mit\Lambda}}$. Lastly, we show that this isomorphism implements the homeomorphism between the boundary-path spaces.
DOI : 10.4064/sm204-2-4
Keywords: construct locally compact hausdorff topology path space finitely aligned k graph mit lambda identify boundary path space partial mit lambda spectrum commutative * subalgebra mit lambda * mit lambda using construction similar farthing construct finitely aligned k graph widetilde mit lambda sources which mit lambda embedded partial mit lambda homeomorphic subset partial widetilde mit lambda mit lambda row finite identify * mit lambda full corner * widetilde mit lambda deduce mit lambda isomorphic corner widetilde mit lambda lastly isomorphism implements homeomorphism between boundary path spaces

Samuel B. G. Webster  1

1 School of Mathematics and Applied Statistics University of Wollongong Wollongong, NSW 2522, Australia
@article{10_4064_sm204_2_4,
     author = {Samuel B. G. Webster},
     title = {The path space of a higher-rank graph},
     journal = {Studia Mathematica},
     pages = {155--185},
     year = {2011},
     volume = {204},
     number = {2},
     doi = {10.4064/sm204-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm204-2-4/}
}
TY  - JOUR
AU  - Samuel B. G. Webster
TI  - The path space of a higher-rank graph
JO  - Studia Mathematica
PY  - 2011
SP  - 155
EP  - 185
VL  - 204
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm204-2-4/
DO  - 10.4064/sm204-2-4
LA  - en
ID  - 10_4064_sm204_2_4
ER  - 
%0 Journal Article
%A Samuel B. G. Webster
%T The path space of a higher-rank graph
%J Studia Mathematica
%D 2011
%P 155-185
%V 204
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm204-2-4/
%R 10.4064/sm204-2-4
%G en
%F 10_4064_sm204_2_4
Samuel B. G. Webster. The path space of a higher-rank graph. Studia Mathematica, Tome 204 (2011) no. 2, pp. 155-185. doi: 10.4064/sm204-2-4

Cité par Sources :