Quasiconformal mappings and exponentially integrable functions
Studia Mathematica, Tome 203 (2011) no. 2, pp. 195-203 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that a $K$-quasiconformal mapping $f:\mathbb R^2\rightarrow\mathbb R^2$ which maps the unit disk $\mathbb D$ onto itself preserves the space ${\rm EXP}(\mathbb D)$ of exponentially integrable functions over $\mathbb D$, in the sense that $u \in {\rm EXP}(\mathbb D)$ if and only if $u \circ f^{-1} \in {\rm EXP}(\mathbb D)$. Moreover, if $f$ is assumed to be conformal outside the unit disk and principal, we provide the estimate $$ \frac 1{1+K\log K}\le \frac{\|u \circ f^{-1}\|_{{\rm EXP}(\mathbb D)}}{\|u\|_{\rm{EXP}(\mathbb D)} } \le 1+K\log K $$ for every $ u \in {\rm EXP}(\mathbb{D})$. Similarly, we consider the distance from $L^\infty$ in $\rm EXP$ and we prove that if $f:{\mit\Omega} \rightarrow {\mit\Omega}^\prime$ is a $K$-quasiconformal mapping and $G \subset \subset \mit\Omega$, then $$ \frac 1 K \le \frac{{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))}{ {\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G ))}\le K $$ for every $ u \in{\rm EXP}(\mathbb G)$. We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping $f:\mathbb D \rightarrow \mathbb D$, a domain $G \subset \subset \mathbb D$ and a function $u\in {\rm EXP}(G)$ such that $$ {\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))= K\,{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G )). $$
DOI : 10.4064/sm203-2-5
Keywords: prove k quasiconformal mapping mathbb rightarrow mathbb which maps unit disk mathbb itself preserves space exp mathbb exponentially integrable functions mathbb sense exp mathbb only circ exp mathbb moreover assumed conformal outside unit disk principal provide estimate frac log frac circ exp mathbb exp mathbb log every exp mathbb similarly consider distance infty exp prove mit omega rightarrow mit omega prime k quasiconformal mapping subset subset mit omega frac frac dist exp circ infty dist exp infty every exp mathbb prove estimate sharp sense there exist quasiconformal mapping mathbb rightarrow mathbb domain subset subset mathbb function exp dist exp circ infty dist exp infty

Fernando Farroni 1 ; Raffaella Giova 2

1 Dipartimento di Matematica e Applicazioni “R. Caccioppoli” Università degli Studi di Napoli Federico II Via Cintia 80126 Napoli, Italy
2 Dipartimento di Statistica e Matematica per la Ricerca Economica Università degli Studi di Napoli Parthenope Via Medina, 40 80133 Napoli, Italy
@article{10_4064_sm203_2_5,
     author = {Fernando Farroni and Raffaella Giova},
     title = {Quasiconformal mappings and exponentially integrable functions},
     journal = {Studia Mathematica},
     pages = {195--203},
     year = {2011},
     volume = {203},
     number = {2},
     doi = {10.4064/sm203-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-5/}
}
TY  - JOUR
AU  - Fernando Farroni
AU  - Raffaella Giova
TI  - Quasiconformal mappings and exponentially integrable functions
JO  - Studia Mathematica
PY  - 2011
SP  - 195
EP  - 203
VL  - 203
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-5/
DO  - 10.4064/sm203-2-5
LA  - en
ID  - 10_4064_sm203_2_5
ER  - 
%0 Journal Article
%A Fernando Farroni
%A Raffaella Giova
%T Quasiconformal mappings and exponentially integrable functions
%J Studia Mathematica
%D 2011
%P 195-203
%V 203
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-5/
%R 10.4064/sm203-2-5
%G en
%F 10_4064_sm203_2_5
Fernando Farroni; Raffaella Giova. Quasiconformal mappings and exponentially integrable functions. Studia Mathematica, Tome 203 (2011) no. 2, pp. 195-203. doi: 10.4064/sm203-2-5

Cité par Sources :