Quasiconformal mappings and exponentially integrable functions
Studia Mathematica, Tome 203 (2011) no. 2, pp. 195-203
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that a $K$-quasiconformal mapping $f:\mathbb R^2\rightarrow\mathbb R^2$
which maps the unit disk $\mathbb D$ onto itself
preserves the space ${\rm EXP}(\mathbb D)$ of exponentially integrable functions
over $\mathbb D$, in the sense that
$u \in {\rm EXP}(\mathbb D)$ if and only if $u \circ f^{-1} \in {\rm EXP}(\mathbb D)$.
Moreover, if $f$ is assumed to be conformal outside the unit
disk and principal, we provide the estimate
$$
\frac 1{1+K\log K}\le \frac{\|u \circ f^{-1}\|_{{\rm EXP}(\mathbb D)}}{\|u\|_{\rm{EXP}(\mathbb D)} }
\le 1+K\log K
$$
for every $ u \in {\rm EXP}(\mathbb{D})$.
Similarly, we consider the distance from
$L^\infty$ in $\rm EXP$ and we prove that
if $f:{\mit\Omega} \rightarrow {\mit\Omega}^\prime$ is a
$K$-quasiconformal mapping and $G \subset \subset \mit\Omega$,
then
$$
\frac 1 K \le \frac{{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))}{
{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G ))}\le K
$$
for every $ u \in{\rm EXP}(\mathbb G)$. We also prove that the last estimate
is sharp, in the sense that there exist a quasiconformal
mapping $f:\mathbb D \rightarrow \mathbb D$, a domain $G \subset \subset \mathbb D$
and a function $u\in {\rm EXP}(G)$ such that
$$
{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))=
K\,{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G )).
$$
Keywords:
prove k quasiconformal mapping mathbb rightarrow mathbb which maps unit disk mathbb itself preserves space exp mathbb exponentially integrable functions mathbb sense exp mathbb only circ exp mathbb moreover assumed conformal outside unit disk principal provide estimate frac log frac circ exp mathbb exp mathbb log every exp mathbb similarly consider distance infty exp prove mit omega rightarrow mit omega prime k quasiconformal mapping subset subset mit omega frac frac dist exp circ infty dist exp infty every exp mathbb prove estimate sharp sense there exist quasiconformal mapping mathbb rightarrow mathbb domain subset subset mathbb function exp dist exp circ infty dist exp infty
Affiliations des auteurs :
Fernando Farroni 1 ; Raffaella Giova 2
@article{10_4064_sm203_2_5,
author = {Fernando Farroni and Raffaella Giova},
title = {Quasiconformal mappings and exponentially integrable functions},
journal = {Studia Mathematica},
pages = {195--203},
year = {2011},
volume = {203},
number = {2},
doi = {10.4064/sm203-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-5/}
}
TY - JOUR AU - Fernando Farroni AU - Raffaella Giova TI - Quasiconformal mappings and exponentially integrable functions JO - Studia Mathematica PY - 2011 SP - 195 EP - 203 VL - 203 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-5/ DO - 10.4064/sm203-2-5 LA - en ID - 10_4064_sm203_2_5 ER -
Fernando Farroni; Raffaella Giova. Quasiconformal mappings and exponentially integrable functions. Studia Mathematica, Tome 203 (2011) no. 2, pp. 195-203. doi: 10.4064/sm203-2-5
Cité par Sources :