Square functions associated to Schrödinger operators
Studia Mathematica, Tome 203 (2011) no. 2, pp. 171-194
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We characterize geometric properties of Banach spaces in terms
of boundedness of square functions associated to general
Schrödinger operators of the form $\mathcal L=-{\mit\Delta}+V$, where the
nonnegative potential $V$ satisfies a reverse Hölder inequality.
The main idea is to sharpen the well known localization method
introduced by Z. Shen. Our results can be regarded as
alternative proofs of the boundedness in $H^1$, $L^p$ and BMO
of classical $\mathcal L$-square functions.
Keywords:
characterize geometric properties banach spaces terms boundedness square functions associated general schr dinger operators form mathcal mit delta where nonnegative potential satisfies reverse lder inequality main idea sharpen known localization method introduced shen results regarded alternative proofs boundedness bmo classical mathcal l square functions
Affiliations des auteurs :
I. Abu-Falahah 1 ; P. R. Stinga 1 ; J. L. Torrea 2
@article{10_4064_sm203_2_4,
author = {I. Abu-Falahah and P. R. Stinga and J. L. Torrea},
title = {Square functions associated to {Schr\"odinger} operators},
journal = {Studia Mathematica},
pages = {171--194},
year = {2011},
volume = {203},
number = {2},
doi = {10.4064/sm203-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-4/}
}
TY - JOUR AU - I. Abu-Falahah AU - P. R. Stinga AU - J. L. Torrea TI - Square functions associated to Schrödinger operators JO - Studia Mathematica PY - 2011 SP - 171 EP - 194 VL - 203 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm203-2-4/ DO - 10.4064/sm203-2-4 LA - en ID - 10_4064_sm203_2_4 ER -
I. Abu-Falahah; P. R. Stinga; J. L. Torrea. Square functions associated to Schrödinger operators. Studia Mathematica, Tome 203 (2011) no. 2, pp. 171-194. doi: 10.4064/sm203-2-4
Cité par Sources :