$L_1$-uniqueness of degenerate elliptic operators
Studia Mathematica, Tome 203 (2011) no. 1, pp. 79-103 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let $\Omega$ be an open subset of ${\mathbb R}^d$ with $0\in \Omega$. Furthermore, let $H_\Omega=-\sum^d_{i,j=1}\partial_ic_{ij}\partial_j$ be a second-order partial differential operator with domain $C_c^\infty(\Omega)$ where the coefficients $c_{ij}\in W^{1,\infty}_{\rm loc}(\overline\Omega)$ are real, $c_{ij}=c_{ji}$ and the coefficient matrix $C=(c_{ij})$ satisfies bounds $0 C(x)\leq c(|x|) I$ for all $x\in \Omega$. If \[ \int^\infty_0ds\,s^{d/2}e^{-\lambda\mu(s)^2} \infty \] for some $\lambda>0$ where $\mu(s)=\int^s_0dt\,c(t)^{-1/2}$ then we establish that $H_\Omega$ is $L_1$-unique, i.e. it has a unique $L_1$-extension which generates a continuous semigroup, if and only if it is Markov unique, i.e. it has a unique $L_2$-extension which generates a submarkovian semigroup. Moreover these uniqueness conditions are equivalent to the capacity of the boundary of $\Omega$, measured with respect to $H_\Omega$, being zero. We also demonstrate that the capacity depends on two gross features, the Hausdorff dimension of subsets $A$ of the boundary of the set and the order of degeneracy of $H_\Omega$ at $A$.
DOI : 10.4064/sm203-1-5
Keywords: omega subset mathbb omega furthermore omega sum partial partial second order partial differential operator domain infty omega where coefficients infty loc overline omega real coefficient matrix satisfies bounds leq omega int infty lambda infty lambda where int establish omega unique has unique extension which generates continuous semigroup only markov unique has unique extension which generates submarkovian semigroup moreover these uniqueness conditions equivalent capacity boundary omega measured respect omega being zero demonstrate capacity depends gross features hausdorff dimension subsets boundary set order degeneracy omega nbsp

Derek W. Robinson 1 ; Adam Sikora 2

1 Centre for Mathematics and its Applications Australian National University Canberra, ACT 0200, Australia
2 Department of Mathematics Macquarie University Sydney, NSW 2109, Australia
@article{10_4064_sm203_1_5,
     author = {Derek W. Robinson and Adam Sikora},
     title = {$L_1$-uniqueness of degenerate elliptic operators},
     journal = {Studia Mathematica},
     pages = {79--103},
     year = {2011},
     volume = {203},
     number = {1},
     doi = {10.4064/sm203-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-5/}
}
TY  - JOUR
AU  - Derek W. Robinson
AU  - Adam Sikora
TI  - $L_1$-uniqueness of degenerate elliptic operators
JO  - Studia Mathematica
PY  - 2011
SP  - 79
EP  - 103
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-5/
DO  - 10.4064/sm203-1-5
LA  - en
ID  - 10_4064_sm203_1_5
ER  - 
%0 Journal Article
%A Derek W. Robinson
%A Adam Sikora
%T $L_1$-uniqueness of degenerate elliptic operators
%J Studia Mathematica
%D 2011
%P 79-103
%V 203
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-5/
%R 10.4064/sm203-1-5
%G en
%F 10_4064_sm203_1_5
Derek W. Robinson; Adam Sikora. $L_1$-uniqueness of degenerate elliptic operators. Studia Mathematica, Tome 203 (2011) no. 1, pp. 79-103. doi: 10.4064/sm203-1-5

Cité par Sources :