Universal bounds for matrix semigroups
Studia Mathematica, Tome 203 (2011) no. 1, pp. 69-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that any compact
semigroup of $n\times n$ matrices is similar to a semigroup
bounded by $\sqrt{n}$. We give examples to show that this bound is
best possible and consider the effect of the minimal rank of
matrices in the semigroup on this bound.
Keywords:
compact semigroup times matrices similar semigroup bounded sqrt examples bound best possible consider effect minimal rank matrices semigroup bound
Affiliations des auteurs :
Leo Livshits 1 ; Gordon MacDonald 2 ; Heydar Radjavi 3
@article{10_4064_sm203_1_4,
author = {Leo Livshits and Gordon MacDonald and Heydar Radjavi},
title = {Universal bounds for matrix semigroups},
journal = {Studia Mathematica},
pages = {69--77},
publisher = {mathdoc},
volume = {203},
number = {1},
year = {2011},
doi = {10.4064/sm203-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-4/}
}
TY - JOUR AU - Leo Livshits AU - Gordon MacDonald AU - Heydar Radjavi TI - Universal bounds for matrix semigroups JO - Studia Mathematica PY - 2011 SP - 69 EP - 77 VL - 203 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-4/ DO - 10.4064/sm203-1-4 LA - en ID - 10_4064_sm203_1_4 ER -
Leo Livshits; Gordon MacDonald; Heydar Radjavi. Universal bounds for matrix semigroups. Studia Mathematica, Tome 203 (2011) no. 1, pp. 69-77. doi: 10.4064/sm203-1-4
Cité par Sources :