A joint limit theorem for
compactly regenerative ergodic transformations
Studia Mathematica, Tome 203 (2011) no. 1, pp. 33-45
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector $(Z_{n},S_{n})$, where $Z_{n}$ and $S_{n}$ are respectively the time of the last visit before time $n$ to, and the occupation time of, a suitable set $Y$ of finite measure.
Keywords:
study conservative ergodic infinite measure preserving transformations satisfying compact regeneration property introduced second named author anal math assuming regular variation wandering rate clarify asymptotic distributional behaviour random vector where respectively time visit before time occupation time suitable set finite measure
Affiliations des auteurs :
David Kocheim 1 ; Roland Zweimüller 2
@article{10_4064_sm203_1_2,
author = {David Kocheim and Roland Zweim\"uller},
title = {A joint limit theorem for
compactly regenerative ergodic transformations},
journal = {Studia Mathematica},
pages = {33--45},
publisher = {mathdoc},
volume = {203},
number = {1},
year = {2011},
doi = {10.4064/sm203-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/}
}
TY - JOUR AU - David Kocheim AU - Roland Zweimüller TI - A joint limit theorem for compactly regenerative ergodic transformations JO - Studia Mathematica PY - 2011 SP - 33 EP - 45 VL - 203 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/ DO - 10.4064/sm203-1-2 LA - en ID - 10_4064_sm203_1_2 ER -
%0 Journal Article %A David Kocheim %A Roland Zweimüller %T A joint limit theorem for compactly regenerative ergodic transformations %J Studia Mathematica %D 2011 %P 33-45 %V 203 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/ %R 10.4064/sm203-1-2 %G en %F 10_4064_sm203_1_2
David Kocheim; Roland Zweimüller. A joint limit theorem for compactly regenerative ergodic transformations. Studia Mathematica, Tome 203 (2011) no. 1, pp. 33-45. doi: 10.4064/sm203-1-2
Cité par Sources :