A joint limit theorem for compactly regenerative ergodic transformations
Studia Mathematica, Tome 203 (2011) no. 1, pp. 33-45

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study conservative ergodic infinite measure preserving transformations satisfying a compact regeneration property introduced by the second-named author in J. Anal. Math. 103 (2007). Assuming regular variation of the wandering rate, we clarify the asymptotic distributional behaviour of the random vector $(Z_{n},S_{n})$, where $Z_{n}$ and $S_{n}$ are respectively the time of the last visit before time $n$ to, and the occupation time of, a suitable set $Y$ of finite measure.
DOI : 10.4064/sm203-1-2
Keywords: study conservative ergodic infinite measure preserving transformations satisfying compact regeneration property introduced second named author anal math assuming regular variation wandering rate clarify asymptotic distributional behaviour random vector where respectively time visit before time occupation time suitable set finite measure

David Kocheim 1 ; Roland Zweimüller 2

1 Faculy of Mathematics University of Vienna Nordbergstrasse 15 1090 Wien, Austria
2 Department of Mathematics University of Surrey Guildford GU2 7XH, UK
@article{10_4064_sm203_1_2,
     author = {David Kocheim and Roland Zweim\"uller},
     title = {A joint limit theorem for
 compactly regenerative ergodic transformations},
     journal = {Studia Mathematica},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {203},
     number = {1},
     year = {2011},
     doi = {10.4064/sm203-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/}
}
TY  - JOUR
AU  - David Kocheim
AU  - Roland Zweimüller
TI  - A joint limit theorem for
 compactly regenerative ergodic transformations
JO  - Studia Mathematica
PY  - 2011
SP  - 33
EP  - 45
VL  - 203
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/
DO  - 10.4064/sm203-1-2
LA  - en
ID  - 10_4064_sm203_1_2
ER  - 
%0 Journal Article
%A David Kocheim
%A Roland Zweimüller
%T A joint limit theorem for
 compactly regenerative ergodic transformations
%J Studia Mathematica
%D 2011
%P 33-45
%V 203
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-2/
%R 10.4064/sm203-1-2
%G en
%F 10_4064_sm203_1_2
David Kocheim; Roland Zweimüller. A joint limit theorem for
 compactly regenerative ergodic transformations. Studia Mathematica, Tome 203 (2011) no. 1, pp. 33-45. doi: 10.4064/sm203-1-2

Cité par Sources :