On the Rademacher maximal function
Studia Mathematica, Tome 203 (2011) no. 1, pp. 1-31 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The $L^p$-boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to $\sigma $-finite measure spaces with filtrations and the $L^p$-boundedness is shown not to depend on the underlying measure space or the filtration. Martingale techniques are applied to prove that a weak type inequality is sufficient for $L^p$-boundedness and also to provide a characterization by concave functions.
DOI : 10.4064/sm203-1-1
Keywords: paper studies maximal operator introduced hyt nen mcintosh portal functions taking values banach space p boundedness operator depends range space certain requirements type cotype present instance original euclidean definition maximal function generalized sigma finite measure spaces filtrations p boundedness shown depend underlying measure space filtration martingale techniques applied prove weak type inequality sufficient p boundedness provide characterization concave functions

Mikko Kemppainen 1

1 Department of Mathematics and Statistics University of Helsinki Gustaf Hällströmin katu 2b FI-00014 Helsinki, Finland
@article{10_4064_sm203_1_1,
     author = {Mikko Kemppainen},
     title = {On the {Rademacher} maximal function},
     journal = {Studia Mathematica},
     pages = {1--31},
     year = {2011},
     volume = {203},
     number = {1},
     doi = {10.4064/sm203-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-1/}
}
TY  - JOUR
AU  - Mikko Kemppainen
TI  - On the Rademacher maximal function
JO  - Studia Mathematica
PY  - 2011
SP  - 1
EP  - 31
VL  - 203
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-1/
DO  - 10.4064/sm203-1-1
LA  - en
ID  - 10_4064_sm203_1_1
ER  - 
%0 Journal Article
%A Mikko Kemppainen
%T On the Rademacher maximal function
%J Studia Mathematica
%D 2011
%P 1-31
%V 203
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm203-1-1/
%R 10.4064/sm203-1-1
%G en
%F 10_4064_sm203_1_1
Mikko Kemppainen. On the Rademacher maximal function. Studia Mathematica, Tome 203 (2011) no. 1, pp. 1-31. doi: 10.4064/sm203-1-1

Cité par Sources :