Suitable domains to define fractional integrals of Weyl via fractional powers of operators
Studia Mathematica, Tome 202 (2011) no. 2, pp. 145-164

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present a new method to study the classical fractional integrals of Weyl. This new approach basically consists in considering these operators in the largest space where they make sense. In particular, we construct a theory of fractional integrals of Weyl by studying these operators in an appropriate Fréchet space. This is a function space which contains the $L^{p}( \mathbb{R})$-spaces, and it appears in a natural way if we wish to identify these fractional operators with fractional powers of a suitable non-negative operator. This identification allows us to give a unified view of the theory and provides some elegant proofs of some well-known results on the fractional integrals of Weyl.
DOI : 10.4064/sm202-2-3
Keywords: present method study classical fractional integrals weyl approach basically consists considering these operators largest space where make sense particular construct theory fractional integrals weyl studying these operators appropriate chet space function space which contains mathbb spaces appears natural wish identify these fractional operators fractional powers suitable non negative operator identification allows unified view theory provides elegant proofs well known results fractional integrals weyl

Celso Martínez 1 ; Antonia Redondo 2 ; Miguel Sanz 1

1 Departament de Matemàtica Aplicada Universitat de València 46100 Burjassot, València, Spain
2 Departamento de Matemáticas I.E.S. Bachiller Sabuco 02002 Albacete, Spain
@article{10_4064_sm202_2_3,
     author = {Celso Mart{\'\i}nez and Antonia Redondo and Miguel Sanz},
     title = {Suitable domains
to define fractional integrals of {Weyl
} via fractional powers of
operators},
     journal = {Studia Mathematica},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {202},
     number = {2},
     year = {2011},
     doi = {10.4064/sm202-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/}
}
TY  - JOUR
AU  - Celso Martínez
AU  - Antonia Redondo
AU  - Miguel Sanz
TI  - Suitable domains
to define fractional integrals of Weyl
 via fractional powers of
operators
JO  - Studia Mathematica
PY  - 2011
SP  - 145
EP  - 164
VL  - 202
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/
DO  - 10.4064/sm202-2-3
LA  - en
ID  - 10_4064_sm202_2_3
ER  - 
%0 Journal Article
%A Celso Martínez
%A Antonia Redondo
%A Miguel Sanz
%T Suitable domains
to define fractional integrals of Weyl
 via fractional powers of
operators
%J Studia Mathematica
%D 2011
%P 145-164
%V 202
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/
%R 10.4064/sm202-2-3
%G en
%F 10_4064_sm202_2_3
Celso Martínez; Antonia Redondo; Miguel Sanz. Suitable domains
to define fractional integrals of Weyl
 via fractional powers of
operators. Studia Mathematica, Tome 202 (2011) no. 2, pp. 145-164. doi: 10.4064/sm202-2-3

Cité par Sources :