Suitable domains
to define fractional integrals of Weyl
 via fractional powers of
operators
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 202 (2011) no. 2, pp. 145-164
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We present a new method to
study the classical fractional integrals of Weyl. This new
approach basically consists in considering these operators in the
largest space where they make sense. In particular, we construct a
theory of fractional integrals of Weyl by studying these operators
in an appropriate Fréchet space. This is a function space
which contains the $L^{p}( \mathbb{R})$-spaces, and it appears in
a natural way if we wish to identify these fractional operators
with
 fractional powers of a suitable non-negative operator. This
identification allows us to give a unified view of the theory and
provides some elegant proofs of some  well-known results on the
fractional integrals of Weyl.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
present method study classical fractional integrals weyl approach basically consists considering these operators largest space where make sense particular construct theory fractional integrals weyl studying these operators appropriate chet space function space which contains mathbb spaces appears natural wish identify these fractional operators fractional powers suitable non negative operator identification allows unified view theory provides elegant proofs well known results fractional integrals weyl
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Celso Martínez 1 ; Antonia Redondo 2 ; Miguel Sanz 1
@article{10_4064_sm202_2_3,
     author = {Celso Mart{\'\i}nez and Antonia Redondo and Miguel Sanz},
     title = {Suitable domains
to define fractional integrals of {Weyl
} via fractional powers of
operators},
     journal = {Studia Mathematica},
     pages = {145--164},
     publisher = {mathdoc},
     volume = {202},
     number = {2},
     year = {2011},
     doi = {10.4064/sm202-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/}
}
                      
                      
                    TY - JOUR AU - Celso Martínez AU - Antonia Redondo AU - Miguel Sanz TI - Suitable domains to define fractional integrals of Weyl via fractional powers of operators JO - Studia Mathematica PY - 2011 SP - 145 EP - 164 VL - 202 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/ DO - 10.4064/sm202-2-3 LA - en ID - 10_4064_sm202_2_3 ER -
%0 Journal Article %A Celso Martínez %A Antonia Redondo %A Miguel Sanz %T Suitable domains to define fractional integrals of Weyl via fractional powers of operators %J Studia Mathematica %D 2011 %P 145-164 %V 202 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm202-2-3/ %R 10.4064/sm202-2-3 %G en %F 10_4064_sm202_2_3
Celso Martínez; Antonia Redondo; Miguel Sanz. Suitable domains to define fractional integrals of Weyl via fractional powers of operators. Studia Mathematica, Tome 202 (2011) no. 2, pp. 145-164. doi: 10.4064/sm202-2-3
Cité par Sources :
