Periodic solutions of degenerate differential equations in
vector-valued function spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $A$ and $M$ be closed linear operators defined on a complex
Banach space
 $X.$ Using
operator-valued Fourier multiplier theorems, we obtain necessary
and sufficient conditions for the
 existence and uniqueness of periodic solutions to the equation
 $\frac{d}{dt}(Mu(t)) = Au(t) + f(t)$, in terms of either boundedness or $R$-boundedness of the modified resolvent operator
 determined by the equation. Our results are obtained in the scales of periodic Besov and periodic Lebesgue
 vector-valued spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
closed linear operators defined complex banach space using operator valued fourier multiplier theorems obtain necessary sufficient conditions existence uniqueness periodic solutions equation frac terms either boundedness r boundedness modified resolvent operator determined equation results obtained scales periodic besov periodic lebesgue vector valued spaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Carlos Lizama 1 ; Rodrigo Ponce 1
@article{10_4064_sm202_1_3,
     author = {Carlos Lizama and Rodrigo Ponce},
     title = {Periodic solutions of degenerate differential equations in
vector-valued function spaces},
     journal = {Studia Mathematica},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     doi = {10.4064/sm202-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/}
}
                      
                      
                    TY - JOUR AU - Carlos Lizama AU - Rodrigo Ponce TI - Periodic solutions of degenerate differential equations in vector-valued function spaces JO - Studia Mathematica PY - 2011 SP - 49 EP - 63 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/ DO - 10.4064/sm202-1-3 LA - en ID - 10_4064_sm202_1_3 ER -
%0 Journal Article %A Carlos Lizama %A Rodrigo Ponce %T Periodic solutions of degenerate differential equations in vector-valued function spaces %J Studia Mathematica %D 2011 %P 49-63 %V 202 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/ %R 10.4064/sm202-1-3 %G en %F 10_4064_sm202_1_3
Carlos Lizama; Rodrigo Ponce. Periodic solutions of degenerate differential equations in vector-valued function spaces. Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63. doi: 10.4064/sm202-1-3
Cité par Sources :
