Periodic solutions of degenerate differential equations in vector-valued function spaces
Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A$ and $M$ be closed linear operators defined on a complex Banach space $X.$ Using operator-valued Fourier multiplier theorems, we obtain necessary and sufficient conditions for the existence and uniqueness of periodic solutions to the equation $\frac{d}{dt}(Mu(t)) = Au(t) + f(t)$, in terms of either boundedness or $R$-boundedness of the modified resolvent operator determined by the equation. Our results are obtained in the scales of periodic Besov and periodic Lebesgue vector-valued spaces.
DOI : 10.4064/sm202-1-3
Keywords: closed linear operators defined complex banach space using operator valued fourier multiplier theorems obtain necessary sufficient conditions existence uniqueness periodic solutions equation frac terms either boundedness r boundedness modified resolvent operator determined equation results obtained scales periodic besov periodic lebesgue vector valued spaces

Carlos Lizama 1 ; Rodrigo Ponce 1

1 Departamento de Matemática Facultad de Ciencias Universidad de Santiago de Chile Casilla 307-Correo 2 Santiago, Chile
@article{10_4064_sm202_1_3,
     author = {Carlos Lizama and Rodrigo Ponce},
     title = {Periodic solutions of degenerate differential equations in
vector-valued function spaces},
     journal = {Studia Mathematica},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     doi = {10.4064/sm202-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/}
}
TY  - JOUR
AU  - Carlos Lizama
AU  - Rodrigo Ponce
TI  - Periodic solutions of degenerate differential equations in
vector-valued function spaces
JO  - Studia Mathematica
PY  - 2011
SP  - 49
EP  - 63
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/
DO  - 10.4064/sm202-1-3
LA  - en
ID  - 10_4064_sm202_1_3
ER  - 
%0 Journal Article
%A Carlos Lizama
%A Rodrigo Ponce
%T Periodic solutions of degenerate differential equations in
vector-valued function spaces
%J Studia Mathematica
%D 2011
%P 49-63
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/
%R 10.4064/sm202-1-3
%G en
%F 10_4064_sm202_1_3
Carlos Lizama; Rodrigo Ponce. Periodic solutions of degenerate differential equations in
vector-valued function spaces. Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63. doi: 10.4064/sm202-1-3

Cité par Sources :