Periodic solutions of degenerate differential equations in
vector-valued function spaces
Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A$ and $M$ be closed linear operators defined on a complex
Banach space
$X.$ Using
operator-valued Fourier multiplier theorems, we obtain necessary
and sufficient conditions for the
existence and uniqueness of periodic solutions to the equation
$\frac{d}{dt}(Mu(t)) = Au(t) + f(t)$, in terms of either boundedness or $R$-boundedness of the modified resolvent operator
determined by the equation. Our results are obtained in the scales of periodic Besov and periodic Lebesgue
vector-valued spaces.
Keywords:
closed linear operators defined complex banach space using operator valued fourier multiplier theorems obtain necessary sufficient conditions existence uniqueness periodic solutions equation frac terms either boundedness r boundedness modified resolvent operator determined equation results obtained scales periodic besov periodic lebesgue vector valued spaces
Affiliations des auteurs :
Carlos Lizama 1 ; Rodrigo Ponce 1
@article{10_4064_sm202_1_3,
author = {Carlos Lizama and Rodrigo Ponce},
title = {Periodic solutions of degenerate differential equations in
vector-valued function spaces},
journal = {Studia Mathematica},
pages = {49--63},
year = {2011},
volume = {202},
number = {1},
doi = {10.4064/sm202-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/}
}
TY - JOUR AU - Carlos Lizama AU - Rodrigo Ponce TI - Periodic solutions of degenerate differential equations in vector-valued function spaces JO - Studia Mathematica PY - 2011 SP - 49 EP - 63 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/ DO - 10.4064/sm202-1-3 LA - en ID - 10_4064_sm202_1_3 ER -
%0 Journal Article %A Carlos Lizama %A Rodrigo Ponce %T Periodic solutions of degenerate differential equations in vector-valued function spaces %J Studia Mathematica %D 2011 %P 49-63 %V 202 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-3/ %R 10.4064/sm202-1-3 %G en %F 10_4064_sm202_1_3
Carlos Lizama; Rodrigo Ponce. Periodic solutions of degenerate differential equations in vector-valued function spaces. Studia Mathematica, Tome 202 (2011) no. 1, pp. 49-63. doi: 10.4064/sm202-1-3
Cité par Sources :