Compactness properties of weighted summation operators on trees
Studia Mathematica, Tome 202 (2011) no. 1, pp. 17-47
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate compactness properties of weighted summation operators
$V_{\alpha ,\sigma }$ as mappings from $\ell _1(T)$ into $\ell _q(T)$ for some
$q\in (1,\infty )$. Those operators are defined by
$$ (V_{\alpha ,\sigma } x)(t) :=\alpha (t)
\sum _{s\succeq t}\sigma (s) x(s),\hskip 1em t\in T, $$
where $T$ is a tree with partial order $\preceq $. Here $\alpha $ and $\sigma $ are given weights on $T$. We introduce a metric $d$ on $T$ such that compactness properties of $(T,d)$ imply two-sided estimates for $e_n(V_{\alpha ,\sigma })$, the (dyadic) entropy numbers of $V_{\alpha ,\sigma }$. The results are applied to concrete trees, e.g.
moderately increasing, biased or binary trees and to weights with $\alpha (t)\sigma (t)$ decreasing either polynomially or exponentially. We also give some probabilistic applications to Gaussian summation schemes on trees.
Keywords:
investigate compactness properties weighted summation operators alpha sigma mappings ell ell infty those operators defined alpha sigma alpha sum succeq sigma hskip where tree partial order preceq here alpha sigma given weights introduce metric compactness properties imply two sided estimates alpha sigma dyadic entropy numbers alpha sigma results applied concrete trees moderately increasing biased binary trees weights alpha sigma decreasing either polynomially exponentially probabilistic applications gaussian summation schemes trees
Affiliations des auteurs :
Mikhail Lifshits 1 ; Werner Linde 2
@article{10_4064_sm202_1_2,
author = {Mikhail Lifshits and Werner Linde},
title = {Compactness properties of weighted summation operators on trees},
journal = {Studia Mathematica},
pages = {17--47},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2011},
doi = {10.4064/sm202-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-2/}
}
TY - JOUR AU - Mikhail Lifshits AU - Werner Linde TI - Compactness properties of weighted summation operators on trees JO - Studia Mathematica PY - 2011 SP - 17 EP - 47 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-2/ DO - 10.4064/sm202-1-2 LA - en ID - 10_4064_sm202_1_2 ER -
Mikhail Lifshits; Werner Linde. Compactness properties of weighted summation operators on trees. Studia Mathematica, Tome 202 (2011) no. 1, pp. 17-47. doi: 10.4064/sm202-1-2
Cité par Sources :