A Calderón–Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators
Studia Mathematica, Tome 202 (2011) no. 1, pp. 1-15

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a Calderón–Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.
DOI : 10.4064/sm202-1-1
Keywords: prove calder zygmund type estimate which applied sharpen known regularity results spherical means fourier integral operators generalized radon transforms singular oscillatory integrals

Malabika Pramanik 1 ; Keith M. Rogers 2 ; Andreas Seeger 3

1 Department of Mathematics University of British Columbia Room 121 1984 Mathematics Road Vancouver, BC, Canada V6T 1Z2
2 Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM Madrid 28049, Spain
3 Department of Mathematics University of Wisconsin-Madison Madison, WI 53706, U.S.A.
@article{10_4064_sm202_1_1,
     author = {Malabika Pramanik and Keith M. Rogers and Andreas Seeger},
     title = {A {Calder\'on{\textendash}Zygmund} estimate
 with applications to generalized {Radon} transforms
 and {Fourier} integral operators},
     journal = {Studia Mathematica},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {202},
     number = {1},
     year = {2011},
     doi = {10.4064/sm202-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/}
}
TY  - JOUR
AU  - Malabika Pramanik
AU  - Keith M. Rogers
AU  - Andreas Seeger
TI  - A Calderón–Zygmund estimate
 with applications to generalized Radon transforms
 and Fourier integral operators
JO  - Studia Mathematica
PY  - 2011
SP  - 1
EP  - 15
VL  - 202
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/
DO  - 10.4064/sm202-1-1
LA  - en
ID  - 10_4064_sm202_1_1
ER  - 
%0 Journal Article
%A Malabika Pramanik
%A Keith M. Rogers
%A Andreas Seeger
%T A Calderón–Zygmund estimate
 with applications to generalized Radon transforms
 and Fourier integral operators
%J Studia Mathematica
%D 2011
%P 1-15
%V 202
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/
%R 10.4064/sm202-1-1
%G en
%F 10_4064_sm202_1_1
Malabika Pramanik; Keith M. Rogers; Andreas Seeger. A Calderón–Zygmund estimate
 with applications to generalized Radon transforms
 and Fourier integral operators. Studia Mathematica, Tome 202 (2011) no. 1, pp. 1-15. doi: 10.4064/sm202-1-1

Cité par Sources :