A Calderón–Zygmund estimate
with applications to generalized Radon transforms
and Fourier integral operators
Studia Mathematica, Tome 202 (2011) no. 1, pp. 1-15
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a Calderón–Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators, generalized Radon transforms and singular oscillatory integrals.
Keywords:
prove calder zygmund type estimate which applied sharpen known regularity results spherical means fourier integral operators generalized radon transforms singular oscillatory integrals
Affiliations des auteurs :
Malabika Pramanik 1 ; Keith M. Rogers 2 ; Andreas Seeger 3
@article{10_4064_sm202_1_1,
author = {Malabika Pramanik and Keith M. Rogers and Andreas Seeger},
title = {A {Calder\'on{\textendash}Zygmund} estimate
with applications to generalized {Radon} transforms
and {Fourier} integral operators},
journal = {Studia Mathematica},
pages = {1--15},
publisher = {mathdoc},
volume = {202},
number = {1},
year = {2011},
doi = {10.4064/sm202-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/}
}
TY - JOUR AU - Malabika Pramanik AU - Keith M. Rogers AU - Andreas Seeger TI - A Calderón–Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators JO - Studia Mathematica PY - 2011 SP - 1 EP - 15 VL - 202 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/ DO - 10.4064/sm202-1-1 LA - en ID - 10_4064_sm202_1_1 ER -
%0 Journal Article %A Malabika Pramanik %A Keith M. Rogers %A Andreas Seeger %T A Calderón–Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators %J Studia Mathematica %D 2011 %P 1-15 %V 202 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm202-1-1/ %R 10.4064/sm202-1-1 %G en %F 10_4064_sm202_1_1
Malabika Pramanik; Keith M. Rogers; Andreas Seeger. A Calderón–Zygmund estimate with applications to generalized Radon transforms and Fourier integral operators. Studia Mathematica, Tome 202 (2011) no. 1, pp. 1-15. doi: 10.4064/sm202-1-1
Cité par Sources :