Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$
Studia Mathematica, Tome 201 (2010) no. 3, pp. 287-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the convergence behavior of the family of double
sine integrals of the form
$$\int^\infty_0 \int^\infty_0 f(x,y) \sin ux \sin vy\, dx\, dy, \quad \hbox{where} \quad
(u,v) \in \mathbb R^2_+: = \mathbb R_+ \times \mathbb R_+, $$
$\mathbb R_+:= (0, \infty)$, and $f: \mathbb R^2_+ \to \mathbb C$ is a locally absolutely continuous function satisfying certain generalized
monotonicity conditions. We give sufficient conditions for the uniform convergence of the
remainder integrals $\int^{b_1}_{a_1} \int^{b_2}_{a_2}$ to zero in $(u,v) \in \mathbb R^2_+$
as $\max\{a_1, a_2\} \to \infty$ and $b_j > a_j \ge 0$, $j=1,2$ (called uniform convergence in the
regular sense). This implies the uniform convergence of the partial integrals
$\int^{b_1}_0 \int^{b_2}_0$ in $(u,v) \in \mathbb R^2_+$ as $\min \{b_1, b_2\} \to \infty$ (called uniform convergence in
Pringsheim's sense). These sufficient conditions are the best possible in the special case when
$f(x,y) \ge 0$.
Keywords:
investigate convergence behavior family double sine integrals form int infty int infty sin sin quad hbox where quad mathbb mathbb times mathbb mathbb infty mathbb mathbb locally absolutely continuous function satisfying certain generalized monotonicity conditions sufficient conditions uniform convergence remainder integrals int int zero mathbb max infty called uniform convergence regular sense implies uniform convergence partial integrals int int mathbb min infty called uniform convergence pringsheims sense these sufficient conditions best possible special
Affiliations des auteurs :
Péter Kórus 1 ; Ferenc Móricz 1
@article{10_4064_sm201_3_4,
author = {P\'eter K\'orus and Ferenc M\'oricz},
title = {Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$},
journal = {Studia Mathematica},
pages = {287--304},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
doi = {10.4064/sm201-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/}
}
TY - JOUR
AU - Péter Kórus
AU - Ferenc Móricz
TI - Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$
JO - Studia Mathematica
PY - 2010
SP - 287
EP - 304
VL - 201
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/
DO - 10.4064/sm201-3-4
LA - en
ID - 10_4064_sm201_3_4
ER -
%0 Journal Article
%A Péter Kórus
%A Ferenc Móricz
%T Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$
%J Studia Mathematica
%D 2010
%P 287-304
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/
%R 10.4064/sm201-3-4
%G en
%F 10_4064_sm201_3_4
Péter Kórus; Ferenc Móricz. Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$. Studia Mathematica, Tome 201 (2010) no. 3, pp. 287-304. doi: 10.4064/sm201-3-4
Cité par Sources :