Generalizations to monotonicity for uniform convergence of double sine integrals over $\overline{\mathbb R}^2_+$
Studia Mathematica, Tome 201 (2010) no. 3, pp. 287-304

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the convergence behavior of the family of double sine integrals of the form $$\int^\infty_0 \int^\infty_0 f(x,y) \sin ux \sin vy\, dx\, dy, \quad \hbox{where} \quad (u,v) \in \mathbb R^2_+: = \mathbb R_+ \times \mathbb R_+, $$ $\mathbb R_+:= (0, \infty)$, and $f: \mathbb R^2_+ \to \mathbb C$ is a locally absolutely continuous function satisfying certain generalized monotonicity conditions. We give sufficient conditions for the uniform convergence of the remainder integrals $\int^{b_1}_{a_1} \int^{b_2}_{a_2}$ to zero in $(u,v) \in \mathbb R^2_+$ as $\max\{a_1, a_2\} \to \infty$ and $b_j > a_j \ge 0$, $j=1,2$ (called uniform convergence in the regular sense). This implies the uniform convergence of the partial integrals $\int^{b_1}_0 \int^{b_2}_0$ in $(u,v) \in \mathbb R^2_+$ as $\min \{b_1, b_2\} \to \infty$ (called uniform convergence in Pringsheim's sense). These sufficient conditions are the best possible in the special case when $f(x,y) \ge 0$.
DOI : 10.4064/sm201-3-4
Keywords: investigate convergence behavior family double sine integrals form int infty int infty sin sin quad hbox where quad mathbb mathbb times mathbb mathbb infty mathbb mathbb locally absolutely continuous function satisfying certain generalized monotonicity conditions sufficient conditions uniform convergence remainder integrals int int zero mathbb max infty called uniform convergence regular sense implies uniform convergence partial integrals int int mathbb min infty called uniform convergence pringsheims sense these sufficient conditions best possible special

Péter Kórus 1 ; Ferenc Móricz 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1 Szeged 6720, Hungary
@article{10_4064_sm201_3_4,
     author = {P\'eter K\'orus and Ferenc M\'oricz},
     title = {Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$},
     journal = {Studia Mathematica},
     pages = {287--304},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2010},
     doi = {10.4064/sm201-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/}
}
TY  - JOUR
AU  - Péter Kórus
AU  - Ferenc Móricz
TI  - Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$
JO  - Studia Mathematica
PY  - 2010
SP  - 287
EP  - 304
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/
DO  - 10.4064/sm201-3-4
LA  - en
ID  - 10_4064_sm201_3_4
ER  - 
%0 Journal Article
%A Péter Kórus
%A Ferenc Móricz
%T Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$
%J Studia Mathematica
%D 2010
%P 287-304
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-4/
%R 10.4064/sm201-3-4
%G en
%F 10_4064_sm201_3_4
Péter Kórus; Ferenc Móricz. Generalizations to monotonicity for uniform convergence
of double sine integrals over $\overline{\mathbb R}^2_+$. Studia Mathematica, Tome 201 (2010) no. 3, pp. 287-304. doi: 10.4064/sm201-3-4

Cité par Sources :