Complex rotundities and midpoint local
uniform rotundity in symmetric spaces of measurable operators
Studia Mathematica, Tome 201 (2010) no. 3, pp. 253-285
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We
investigate the relationships between strongly extreme, complex extreme, and
complex locally uniformly rotund points of the unit ball of a
symmetric function space or a symmetric sequence space $E$, and of
the unit ball of the space $E({\cal M},\tau)$ of $\tau$-measurable operators
associated to a semifinite von Neumann algebra $(\mathcal{M}, \tau)$
or of the unit ball in the unitary matrix space $C_E$.
We prove that strongly extreme, complex extreme, and complex locally
uniformly rotund points $x$ of the unit ball of the symmetric space
$E(\mathcal{M}, \tau)$ inherit these
properties from their singular value function $\mu(x)$ in the unit
ball of $E$ with additional necessary requirements on $x$ in the
case of complex extreme points. We also obtain the full converse
statements for the von Neumann algebra $\mathcal{M}$ with a faithful, normal,
$\sigma$-finite trace $\tau$ as well as for the unitary matrix space $C_E$. Consequently,
corresponding results on the global properties such as midpoint
local uniform rotundity, complex rotundity and complex local uniform
rotundity follow.
Keywords:
investigate relationships between strongly extreme complex extreme complex locally uniformly rotund points unit ball symmetric function space symmetric sequence space unit ball space cal tau tau measurable operators associated semifinite von neumann algebra mathcal tau unit ball unitary matrix space prove strongly extreme complex extreme complex locally uniformly rotund points unit ball symmetric space mathcal tau inherit these properties their singular value function unit ball additional necessary requirements complex extreme points obtain full converse statements von neumann algebra mathcal faithful normal sigma finite trace tau unitary matrix space consequently corresponding results global properties midpoint local uniform rotundity complex rotundity complex local uniform rotundity follow
Affiliations des auteurs :
Małgorzata Marta Czerwińska 1 ; Anna Kamińska 2
@article{10_4064_sm201_3_3,
author = {Ma{\l}gorzata Marta Czerwi\'nska and Anna Kami\'nska},
title = {Complex rotundities and midpoint local
uniform rotundity in symmetric spaces of measurable operators},
journal = {Studia Mathematica},
pages = {253--285},
publisher = {mathdoc},
volume = {201},
number = {3},
year = {2010},
doi = {10.4064/sm201-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-3/}
}
TY - JOUR AU - Małgorzata Marta Czerwińska AU - Anna Kamińska TI - Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators JO - Studia Mathematica PY - 2010 SP - 253 EP - 285 VL - 201 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-3/ DO - 10.4064/sm201-3-3 LA - en ID - 10_4064_sm201_3_3 ER -
%0 Journal Article %A Małgorzata Marta Czerwińska %A Anna Kamińska %T Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators %J Studia Mathematica %D 2010 %P 253-285 %V 201 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm201-3-3/ %R 10.4064/sm201-3-3 %G en %F 10_4064_sm201_3_3
Małgorzata Marta Czerwińska; Anna Kamińska. Complex rotundities and midpoint local uniform rotundity in symmetric spaces of measurable operators. Studia Mathematica, Tome 201 (2010) no. 3, pp. 253-285. doi: 10.4064/sm201-3-3
Cité par Sources :