An inequality between the James and
James type constants in Banach spaces
Studia Mathematica, Tome 201 (2010) no. 2, pp. 191-201
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the James and Schäffer type constants recently introduced by Takahashi. We prove an equality between James (resp. Schäffer) type constants and the modulus of convexity (resp. smoothness). By using these equalities, we obtain some estimates for the new constants in terms of the James constant. As a result, we improve an inequality between the
Zbăganu and James constants.
Keywords:
consider james sch ffer type constants recently introduced takahashi prove equality between james resp sch ffer type constants modulus convexity resp smoothness using these equalities obtain estimates constants terms james constant result improve inequality between ganu james constants
Affiliations des auteurs :
Fenghui Wang 1 ; Changsen Yang 2
@article{10_4064_sm201_2_5,
author = {Fenghui Wang and Changsen Yang},
title = {An inequality between the {James} and
{James} type constants in {Banach} spaces},
journal = {Studia Mathematica},
pages = {191--201},
year = {2010},
volume = {201},
number = {2},
doi = {10.4064/sm201-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-5/}
}
TY - JOUR AU - Fenghui Wang AU - Changsen Yang TI - An inequality between the James and James type constants in Banach spaces JO - Studia Mathematica PY - 2010 SP - 191 EP - 201 VL - 201 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-5/ DO - 10.4064/sm201-2-5 LA - en ID - 10_4064_sm201_2_5 ER -
Fenghui Wang; Changsen Yang. An inequality between the James and James type constants in Banach spaces. Studia Mathematica, Tome 201 (2010) no. 2, pp. 191-201. doi: 10.4064/sm201-2-5
Cité par Sources :