A Weyl–Titchmarsh type formula
for a discrete Schrödinger operator
with Wigner–von Neumann potential
Studia Mathematica, Tome 201 (2010) no. 2, pp. 167-189
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider a discrete Schrödinger operator $\mathcal J$ with
Wigner–von Neumann potential not belonging to $l^2$.
We find the asymptotics of orthonormal polynomials associated to $\mathcal J$.
We prove a Weyl–Titchmarsh type formula, which relates the spectral
density of $\mathcal J$ to a coefficient in the asymptotics of the orthonormal
polynomials.
Keywords:
consider discrete schr dinger operator mathcal wigner von neumann potential belonging asymptotics orthonormal polynomials associated mathcal prove weyl titchmarsh type formula which relates spectral density mathcal coefficient asymptotics orthonormal polynomials
Affiliations des auteurs :
Jan Janas 1 ; Sergey Simonov 2
@article{10_4064_sm201_2_4,
author = {Jan Janas and Sergey Simonov},
title = {A {Weyl{\textendash}Titchmarsh} type formula
for a discrete {Schr\"odinger} operator
with {Wigner{\textendash}von} {Neumann} potential},
journal = {Studia Mathematica},
pages = {167--189},
year = {2010},
volume = {201},
number = {2},
doi = {10.4064/sm201-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-4/}
}
TY - JOUR AU - Jan Janas AU - Sergey Simonov TI - A Weyl–Titchmarsh type formula for a discrete Schrödinger operator with Wigner–von Neumann potential JO - Studia Mathematica PY - 2010 SP - 167 EP - 189 VL - 201 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-4/ DO - 10.4064/sm201-2-4 LA - en ID - 10_4064_sm201_2_4 ER -
%0 Journal Article %A Jan Janas %A Sergey Simonov %T A Weyl–Titchmarsh type formula for a discrete Schrödinger operator with Wigner–von Neumann potential %J Studia Mathematica %D 2010 %P 167-189 %V 201 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-4/ %R 10.4064/sm201-2-4 %G en %F 10_4064_sm201_2_4
Jan Janas; Sergey Simonov. A Weyl–Titchmarsh type formula for a discrete Schrödinger operator with Wigner–von Neumann potential. Studia Mathematica, Tome 201 (2010) no. 2, pp. 167-189. doi: 10.4064/sm201-2-4
Cité par Sources :