On some new characterizations of weakly compact sets in Banach spaces
Studia Mathematica, Tome 201 (2010) no. 2, pp. 155-166

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show several characterizations of weakly compact sets in Banach spaces. Given a bounded closed convex set $C$ of a Banach space $X$, the following statements are equivalent: (i) $C$ is weakly compact; (ii) $C$ can be affinely uniformly embedded into a reflexive Banach space; (iii) there exists an equivalent norm on $X$ which has the $w2R$-property on $C$; (iv) there is a continuous and $w^{*}$-lower semicontinuous seminorm $p$ on the dual $X^*$ with $p\geq{\sup_C}$ such that $p^2$ is everywhere Fréchet differentiable in $X^*$; and as a consequence, the space $X$ is a weakly compactly generated space if and only if there exists a continuous and $w^*$-l.s.c. Fréchet smooth (not necessarily equivalent) norm on $X^*$.
DOI : 10.4064/sm201-2-3
Keywords: several characterizations weakly compact sets banach spaces given bounded closed convex set banach space following statements equivalent weakly compact affinely uniformly embedded reflexive banach space iii there exists equivalent norm which has r property there continuous * lower semicontinuous seminorm dual * geq sup everywhere chet differentiable * consequence space weakly compactly generated space only there exists continuous * l chet smooth necessarily equivalent norm nbsp *

Lixin Cheng 1 ; Qingjin Cheng 1 ; Zhenghua Luo 1

1 School of Mathematical Sciences, Xiamen University Xiamen, 361005, China
@article{10_4064_sm201_2_3,
     author = {Lixin Cheng and Qingjin Cheng and Zhenghua Luo},
     title = {On some new characterizations of weakly compact sets in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {155--166},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2010},
     doi = {10.4064/sm201-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-3/}
}
TY  - JOUR
AU  - Lixin Cheng
AU  - Qingjin Cheng
AU  - Zhenghua Luo
TI  - On some new characterizations of weakly compact sets in Banach spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 155
EP  - 166
VL  - 201
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-3/
DO  - 10.4064/sm201-2-3
LA  - en
ID  - 10_4064_sm201_2_3
ER  - 
%0 Journal Article
%A Lixin Cheng
%A Qingjin Cheng
%A Zhenghua Luo
%T On some new characterizations of weakly compact sets in Banach spaces
%J Studia Mathematica
%D 2010
%P 155-166
%V 201
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-3/
%R 10.4064/sm201-2-3
%G en
%F 10_4064_sm201_2_3
Lixin Cheng; Qingjin Cheng; Zhenghua Luo. On some new characterizations of weakly compact sets in Banach spaces. Studia Mathematica, Tome 201 (2010) no. 2, pp. 155-166. doi: 10.4064/sm201-2-3

Cité par Sources :