Sharp moment inequalities for differentially subordinated martingales
Studia Mathematica, Tome 201 (2010) no. 2, pp. 103-131
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We determine the optimal constants $C_{p,q}$ in the moment inequalities
$$
\|g\|_p \leq C_{p,q} \|f\|_q,\quad\ 1\leq p q \infty,
$$
where $f=(f_n)$, $g=(g_n)$ are two martingales, adapted to the same filtration, satisfying
$$
|dg_n|\leq |df_n|,\quad\ n=0,1,2,\ldots,
$$
with probability $1$. Furthermore, we establish related sharp estimates
$$ \|g\|_1 \leq \sup_n {\mathbb E} {\mit\Phi}(|f_n|)+L({\mit\Phi}),$$
where ${\mit\Phi}$ is an increasing convex function satisfying certain growth conditions and $L({\mit\Phi})$ depends only on ${\mit\Phi}$.
Keywords:
determine optimal constants moment inequalities leq quad leq infty where martingales adapted filtration satisfying leq quad ldots probability furthermore establish related sharp estimates leq sup mathbb mit phi mit phi where mit phi increasing convex function satisfying certain growth conditions mit phi depends only mit phi
Affiliations des auteurs :
Adam Os/ekowski 1
@article{10_4064_sm201_2_1,
author = {Adam Os/ekowski},
title = {Sharp moment inequalities for differentially subordinated martingales},
journal = {Studia Mathematica},
pages = {103--131},
year = {2010},
volume = {201},
number = {2},
doi = {10.4064/sm201-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-2-1/}
}
Adam Os/ekowski. Sharp moment inequalities for differentially subordinated martingales. Studia Mathematica, Tome 201 (2010) no. 2, pp. 103-131. doi: 10.4064/sm201-2-1
Cité par Sources :