Surjectivity of partial differential operators
on ultradistributions of Beurling type in two dimensions
Studia Mathematica, Tome 201 (2010) no. 1, pp. 87-102
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that if ${\mit\Omega}$ is an open subset of $\mathbb R^2$, then the surjectivity
of a partial differential operator $P(D)$
on the space of ultradistributions $\mathscr{D}'_{(\omega)}({\mit\Omega})$ of Beurling type is equivalent to the surjectivity of $P(D)$ on $C^\infty({\mit\Omega})$.
Keywords:
mit omega subset mathbb surjectivity partial differential operator space ultradistributions mathscr omega mit omega beurling type equivalent surjectivity infty mit omega
Affiliations des auteurs :
Thomas Kalmes  1
@article{10_4064_sm201_1_7,
author = {Thomas Kalmes},
title = {Surjectivity of partial differential operators
on ultradistributions of {Beurling} type in two dimensions},
journal = {Studia Mathematica},
pages = {87--102},
year = {2010},
volume = {201},
number = {1},
doi = {10.4064/sm201-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/}
}
TY - JOUR AU - Thomas Kalmes TI - Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions JO - Studia Mathematica PY - 2010 SP - 87 EP - 102 VL - 201 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/ DO - 10.4064/sm201-1-7 LA - en ID - 10_4064_sm201_1_7 ER -
%0 Journal Article %A Thomas Kalmes %T Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions %J Studia Mathematica %D 2010 %P 87-102 %V 201 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/ %R 10.4064/sm201-1-7 %G en %F 10_4064_sm201_1_7
Thomas Kalmes. Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions. Studia Mathematica, Tome 201 (2010) no. 1, pp. 87-102. doi: 10.4064/sm201-1-7
Cité par Sources :