Surjectivity of partial differential operators on ultradistributions of Beurling type in two dimensions
Studia Mathematica, Tome 201 (2010) no. 1, pp. 87-102 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that if ${\mit\Omega}$ is an open subset of $\mathbb R^2$, then the surjectivity of a partial differential operator $P(D)$ on the space of ultradistributions $\mathscr{D}'_{(\omega)}({\mit\Omega})$ of Beurling type is equivalent to the surjectivity of $P(D)$ on $C^\infty({\mit\Omega})$.
DOI : 10.4064/sm201-1-7
Keywords: mit omega subset mathbb surjectivity partial differential operator space ultradistributions mathscr omega mit omega beurling type equivalent surjectivity infty mit omega

Thomas Kalmes  1

1 Universität Trier, Mathematik 54286 Trier, Germany
@article{10_4064_sm201_1_7,
     author = {Thomas Kalmes},
     title = {Surjectivity of partial differential operators 
on ultradistributions of {Beurling} type in two dimensions},
     journal = {Studia Mathematica},
     pages = {87--102},
     year = {2010},
     volume = {201},
     number = {1},
     doi = {10.4064/sm201-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/}
}
TY  - JOUR
AU  - Thomas Kalmes
TI  - Surjectivity of partial differential operators 
on ultradistributions of Beurling type in two dimensions
JO  - Studia Mathematica
PY  - 2010
SP  - 87
EP  - 102
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/
DO  - 10.4064/sm201-1-7
LA  - en
ID  - 10_4064_sm201_1_7
ER  - 
%0 Journal Article
%A Thomas Kalmes
%T Surjectivity of partial differential operators 
on ultradistributions of Beurling type in two dimensions
%J Studia Mathematica
%D 2010
%P 87-102
%V 201
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-7/
%R 10.4064/sm201-1-7
%G en
%F 10_4064_sm201_1_7
Thomas Kalmes. Surjectivity of partial differential operators 
on ultradistributions of Beurling type in two dimensions. Studia Mathematica, Tome 201 (2010) no. 1, pp. 87-102. doi: 10.4064/sm201-1-7

Cité par Sources :