Sobolev–Besov spaces of measurable functions
Studia Mathematica, Tome 201 (2010) no. 1, pp. 69-86
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper deals with spaces ${\bf L}^s_p
({\mathbb R}^n)$ of Sobolev type where $s>0$, $0 p \le \infty$, and
their relations to corresponding spaces ${\bf B}^s_{p,q} ({\mathbb R}^n)$ of
Besov type where $s>0$, $0 p \le \infty$, $0 q \le \infty$, in
terms of embedding and real interpolation.
Keywords:
paper deals spaces mathbb sobolev type where infty their relations corresponding spaces mathbb besov type where infty infty terms embedding real interpolation
Affiliations des auteurs :
Hans Triebel 1
@article{10_4064_sm201_1_6,
author = {Hans Triebel},
title = {Sobolev{\textendash}Besov spaces of measurable functions},
journal = {Studia Mathematica},
pages = {69--86},
publisher = {mathdoc},
volume = {201},
number = {1},
year = {2010},
doi = {10.4064/sm201-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-6/}
}
Hans Triebel. Sobolev–Besov spaces of measurable functions. Studia Mathematica, Tome 201 (2010) no. 1, pp. 69-86. doi: 10.4064/sm201-1-6
Cité par Sources :