Constructing non-compact operators into $c_0$
Studia Mathematica, Tome 201 (2010) no. 1, pp. 65-67

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for each dense non-compact linear operator $S:X\to Y$ between Banach spaces there is a linear operator $T:Y\to c_0$ such that the operator $TS:X\to c_0$ is not compact. This generalizes the Josefson–Nissenzweig Theorem.
DOI : 10.4064/sm201-1-5
Keywords: prove each dense non compact linear operator between banach spaces there linear operator operator compact generalizes josefson nissenzweig theorem

Iryna Banakh 1 ; Taras Banakh 2

1 Department of Functional Analysis Ya. Pidstryhach Institute for Applied Problems of Mechanics and Mathematics Naukova 3b Lviv, Ukraine
2 Instytut Matematyki Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego Kielce, Poland and Department of Mathematics Ivan Franko National University of Lviv Universytetska 1 79000, Lviv, Ukraine
@article{10_4064_sm201_1_5,
     author = {Iryna Banakh and Taras Banakh},
     title = {Constructing non-compact operators into $c_0$},
     journal = {Studia Mathematica},
     pages = {65--67},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2010},
     doi = {10.4064/sm201-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-5/}
}
TY  - JOUR
AU  - Iryna Banakh
AU  - Taras Banakh
TI  - Constructing non-compact operators into $c_0$
JO  - Studia Mathematica
PY  - 2010
SP  - 65
EP  - 67
VL  - 201
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-5/
DO  - 10.4064/sm201-1-5
LA  - en
ID  - 10_4064_sm201_1_5
ER  - 
%0 Journal Article
%A Iryna Banakh
%A Taras Banakh
%T Constructing non-compact operators into $c_0$
%J Studia Mathematica
%D 2010
%P 65-67
%V 201
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm201-1-5/
%R 10.4064/sm201-1-5
%G en
%F 10_4064_sm201_1_5
Iryna Banakh; Taras Banakh. Constructing non-compact operators into $c_0$. Studia Mathematica, Tome 201 (2010) no. 1, pp. 65-67. doi: 10.4064/sm201-1-5

Cité par Sources :