We prove two theorems. The first theorem reduces to a scalar situation
the well known vector-valued generalization of the Helson–Lowdenslager theorem that
characterizes the invariant subspaces of the operator of multiplication by the coordinate
function $z$ on the vector-valued Lebesgue space $L^2(\mathbb T;\mathbb C^n)$.
Our approach allows us to prove an equivalent version of
the vector-valued Helson–Lowdenslager theorem in a completely scalar setting, thereby
eliminating the use of range functions and partial isometries. The other three major
advantages provided by our characterization are: (i) we provide
precise necessary and sufficient conditions for the presence of reducing subspaces inside
simply invariant subspaces; (ii) we give a complete description of the wandering vectors;
(iii) we prove the theorem in the setting of all the Lebesgue spaces $L^p$$(0 p \le \infty)$.
Our second theorem generalizes the first theorem along the lines of de Branges' generalization
of Beurling's theorem by characterizing those Hilbert spaces that are simply invariant
under multiplication by $z^n$ and which are contractively contained in $L^p$$( 1\le p \le \infty)$.
This also generalizes a theorem of Paulsen and Singh [Proc. Amer. Math. Soc. 129 (2000)]
as well as the main theorem of Redett [Bull. London Math. Soc. 37 (2005)].
@article{10_4064_sm200_3_3,
author = {Sneh Lata and Meghna Mittal and Dinesh Singh},
title = {A finite multiplicity {Helson{\textendash}Lowdenslager{\textendash}de} {Branges} theorem},
journal = {Studia Mathematica},
pages = {247--266},
year = {2010},
volume = {200},
number = {3},
doi = {10.4064/sm200-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-3/}
}
TY - JOUR
AU - Sneh Lata
AU - Meghna Mittal
AU - Dinesh Singh
TI - A finite multiplicity Helson–Lowdenslager–de Branges theorem
JO - Studia Mathematica
PY - 2010
SP - 247
EP - 266
VL - 200
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-3/
DO - 10.4064/sm200-3-3
LA - en
ID - 10_4064_sm200_3_3
ER -
%0 Journal Article
%A Sneh Lata
%A Meghna Mittal
%A Dinesh Singh
%T A finite multiplicity Helson–Lowdenslager–de Branges theorem
%J Studia Mathematica
%D 2010
%P 247-266
%V 200
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-3/
%R 10.4064/sm200-3-3
%G en
%F 10_4064_sm200_3_3
Sneh Lata; Meghna Mittal; Dinesh Singh. A finite multiplicity Helson–Lowdenslager–de Branges theorem. Studia Mathematica, Tome 200 (2010) no. 3, pp. 247-266. doi: 10.4064/sm200-3-3