A Hankel matrix acting on Hardy and Bergman spaces
Studia Mathematica, Tome 200 (2010) no. 3, pp. 201-220
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mu$ be a finite positive Borel measure on $[0,1).$ Let
${\cal H}_\mu=(\mu_{n,k})_{n,k\geq 0}$ be the Hankel matrix with entries $
\mu_{n,k}=\int_{[0,1)} t^{n+k}\,d\mu(t). $ The matrix
$\mathcal{H}_{\mu}$ induces formally an operator on the space of
all analytic functions in the unit disc by the fomula
$$
{\cal H}_\mu(f)(z)=\sum_{n=0}^\infty\Bigl(\sum_{k=
0}^\infty\mu_{n,k}a_k\Bigr)z^n,\ \quad z\in {\mathbb D},
$$
where $f(z)=\sum_{n=0}^\infty a_n z^n$ is an analytic function in $\mathbb D$.We characterize those positive Borel measures on $[0,1)$ such that
${\cal H}_\mu(f)(z)= \int_{[0,1)}\frac{f(t)}{1-tz}\,d\mu(t)$ for all $f$ in
the Hardy space $H^1$, and among them we describe those for which
${\cal H}_\mu$ is bounded and compact on $H^1$. We also study the analogous
problem for the Bergman space $A^2$.
Keywords:
finite positive borel measure cal geq hankel matrix entries int matrix mathcal induces formally operator space analytic functions unit disc fomula cal sum infty bigl sum infty k bigr quad mathbb where sum infty n analytic function mathbb characterize those positive borel measures cal int frac tz hardy space among describe those which cal bounded compact study analogous problem bergman space
Affiliations des auteurs :
Petros Galanopoulos 1 ; José Ángel Peláez 1
@article{10_4064_sm200_3_1,
author = {Petros Galanopoulos and Jos\'e \'Angel Pel\'aez},
title = {A {Hankel} matrix acting on {Hardy} and {Bergman} spaces},
journal = {Studia Mathematica},
pages = {201--220},
publisher = {mathdoc},
volume = {200},
number = {3},
year = {2010},
doi = {10.4064/sm200-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-1/}
}
TY - JOUR AU - Petros Galanopoulos AU - José Ángel Peláez TI - A Hankel matrix acting on Hardy and Bergman spaces JO - Studia Mathematica PY - 2010 SP - 201 EP - 220 VL - 200 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-1/ DO - 10.4064/sm200-3-1 LA - en ID - 10_4064_sm200_3_1 ER -
Petros Galanopoulos; José Ángel Peláez. A Hankel matrix acting on Hardy and Bergman spaces. Studia Mathematica, Tome 200 (2010) no. 3, pp. 201-220. doi: 10.4064/sm200-3-1
Cité par Sources :