A Hankel matrix acting on Hardy and Bergman spaces
Studia Mathematica, Tome 200 (2010) no. 3, pp. 201-220

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mu$ be a finite positive Borel measure on $[0,1).$ Let ${\cal H}_\mu=(\mu_{n,k})_{n,k\geq 0}$ be the Hankel matrix with entries $ \mu_{n,k}=\int_{[0,1)} t^{n+k}\,d\mu(t). $ The matrix $\mathcal{H}_{\mu}$ induces formally an operator on the space of all analytic functions in the unit disc by the fomula $$ {\cal H}_\mu(f)(z)=\sum_{n=0}^\infty\Bigl(\sum_{k= 0}^\infty\mu_{n,k}a_k\Bigr)z^n,\ \quad z\in {\mathbb D}, $$ where $f(z)=\sum_{n=0}^\infty a_n z^n$ is an analytic function in $\mathbb D$.We characterize those positive Borel measures on $[0,1)$ such that ${\cal H}_\mu(f)(z)= \int_{[0,1)}\frac{f(t)}{1-tz}\,d\mu(t)$ for all $f$ in the Hardy space $H^1$, and among them we describe those for which ${\cal H}_\mu$ is bounded and compact on $H^1$. We also study the analogous problem for the Bergman space $A^2$.
DOI : 10.4064/sm200-3-1
Keywords: finite positive borel measure cal geq hankel matrix entries int matrix mathcal induces formally operator space analytic functions unit disc fomula cal sum infty bigl sum infty k bigr quad mathbb where sum infty n analytic function mathbb characterize those positive borel measures cal int frac tz hardy space among describe those which cal bounded compact study analogous problem bergman space

Petros Galanopoulos 1 ; José Ángel Peláez 1

1 Departamento de Análisis Matemático Universidad de Málaga Campus de Teatinos, 29071 Málaga, Spain
@article{10_4064_sm200_3_1,
     author = {Petros Galanopoulos and Jos\'e \'Angel Pel\'aez},
     title = {A {Hankel} matrix acting on {Hardy} and {Bergman} spaces},
     journal = {Studia Mathematica},
     pages = {201--220},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2010},
     doi = {10.4064/sm200-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-1/}
}
TY  - JOUR
AU  - Petros Galanopoulos
AU  - José Ángel Peláez
TI  - A Hankel matrix acting on Hardy and Bergman spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 201
EP  - 220
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-1/
DO  - 10.4064/sm200-3-1
LA  - en
ID  - 10_4064_sm200_3_1
ER  - 
%0 Journal Article
%A Petros Galanopoulos
%A José Ángel Peláez
%T A Hankel matrix acting on Hardy and Bergman spaces
%J Studia Mathematica
%D 2010
%P 201-220
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-3-1/
%R 10.4064/sm200-3-1
%G en
%F 10_4064_sm200_3_1
Petros Galanopoulos; José Ángel Peláez. A Hankel matrix acting on Hardy and Bergman spaces. Studia Mathematica, Tome 200 (2010) no. 3, pp. 201-220. doi: 10.4064/sm200-3-1

Cité par Sources :