The characteristic function for a contraction is a classical
complete unitary invariant devised by Sz.-Nagy and Foiaş. Just as
a contraction is related to the Szegö kernel $k_S(z,w) = (1 -
z\overline w)^{-1}$ for $|z|,|w| 1$, by means of $(1/k_S)(T,T^*)
\ge 0$, we consider an arbitrary open connected domain $\mit\Omega$ in
${\mathbb C}^n$, a complete Pick kernel $k$ on $\mit\Omega$ and a
tuple $T = (T_1, \ldots ,T_n)$ of commuting bounded operators on a
complex separable Hilbert space $\cal H$ such that $(1/k)(T,T^*) \ge
0$. For a complete Pick kernel the $1/k$ functional calculus makes
sense in a beautiful way. It turns out that the model theory works very well and a
characteristic function can be associated with $T$. Moreover, the
characteristic function is then a complete unitary invariant for a
suitable class of tuples $T$.
Keywords:
characteristic function contraction classical complete unitary invariant devised nagy foia just contraction related szeg kernel w overline means * consider arbitrary connected domain mit omega mathbb complete pick kernel mit omega tuple ldots commuting bounded operators complex separable hilbert space cal * complete pick kernel functional calculus makes sense beautiful turns out model theory works characteristic function associated moreover characteristic function complete unitary invariant suitable class tuples
@article{10_4064_sm200_2_3,
author = {Angshuman Bhattacharya and Tirthankar Bhattacharyya},
title = {Complete {Pick} positivity and unitary invariance},
journal = {Studia Mathematica},
pages = {149--162},
year = {2010},
volume = {200},
number = {2},
doi = {10.4064/sm200-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-3/}
}
TY - JOUR
AU - Angshuman Bhattacharya
AU - Tirthankar Bhattacharyya
TI - Complete Pick positivity and unitary invariance
JO - Studia Mathematica
PY - 2010
SP - 149
EP - 162
VL - 200
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-3/
DO - 10.4064/sm200-2-3
LA - en
ID - 10_4064_sm200_2_3
ER -