Complete Pick positivity and unitary invariance
Studia Mathematica, Tome 200 (2010) no. 2, pp. 149-162 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foiaş. Just as a contraction is related to the Szegö kernel $k_S(z,w) = (1 - z\overline w)^{-1}$ for $|z|,|w| 1$, by means of $(1/k_S)(T,T^*) \ge 0$, we consider an arbitrary open connected domain $\mit\Omega$ in ${\mathbb C}^n$, a complete Pick kernel $k$ on $\mit\Omega$ and a tuple $T = (T_1, \ldots ,T_n)$ of commuting bounded operators on a complex separable Hilbert space $\cal H$ such that $(1/k)(T,T^*) \ge 0$. For a complete Pick kernel the $1/k$ functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with $T$. Moreover, the characteristic function is then a complete unitary invariant for a suitable class of tuples $T$.
DOI : 10.4064/sm200-2-3
Keywords: characteristic function contraction classical complete unitary invariant devised nagy foia just contraction related szeg kernel w overline means * consider arbitrary connected domain mit omega mathbb complete pick kernel mit omega tuple ldots commuting bounded operators complex separable hilbert space cal * complete pick kernel functional calculus makes sense beautiful turns out model theory works characteristic function associated moreover characteristic function complete unitary invariant suitable class tuples

Angshuman Bhattacharya  1   ; Tirthankar Bhattacharyya  1

1 Indian Institute of Science Bangalore 560012, India
@article{10_4064_sm200_2_3,
     author = {Angshuman Bhattacharya and Tirthankar Bhattacharyya},
     title = {Complete {Pick} positivity and unitary invariance},
     journal = {Studia Mathematica},
     pages = {149--162},
     year = {2010},
     volume = {200},
     number = {2},
     doi = {10.4064/sm200-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-3/}
}
TY  - JOUR
AU  - Angshuman Bhattacharya
AU  - Tirthankar Bhattacharyya
TI  - Complete Pick positivity and unitary invariance
JO  - Studia Mathematica
PY  - 2010
SP  - 149
EP  - 162
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-3/
DO  - 10.4064/sm200-2-3
LA  - en
ID  - 10_4064_sm200_2_3
ER  - 
%0 Journal Article
%A Angshuman Bhattacharya
%A Tirthankar Bhattacharyya
%T Complete Pick positivity and unitary invariance
%J Studia Mathematica
%D 2010
%P 149-162
%V 200
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-3/
%R 10.4064/sm200-2-3
%G en
%F 10_4064_sm200_2_3
Angshuman Bhattacharya; Tirthankar Bhattacharyya. Complete Pick positivity and unitary invariance. Studia Mathematica, Tome 200 (2010) no. 2, pp. 149-162. doi: 10.4064/sm200-2-3

Cité par Sources :