Hilbert $C^*$-modules from group actions: beyond the finite orbits case
Studia Mathematica, Tome 200 (2010) no. 2, pp. 131-148 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Continuous actions of topological groups on compact Hausdorff spaces $X$ are investigated which induce almost periodic functions in the corresponding commutative $C^*$-algebra. The unique invariant mean on the group resulting from averaging allows one to derive a $C^*$-valued inner product and a Hilbert $C^*$-module which serve as an environment to describe characteristics of the group action. For Lyapunov stable actions the derived invariant mean $M(\phi _x)$ is continuous on $X$ for any $\phi \in C(X)$, and the induced $C^*$-valued inner product corresponds to a conditional expectation from $C(X)$ onto the fixed-point algebra of the action defined by averaging on orbits. In the case of self-duality of the Hilbert $C^*$-module all orbits are shown to have the same cardinality. Stable actions on compact metric spaces give rise to $C^*$-reflexive Hilbert $C^*$-modules. The same is true if the cardinality of finite orbits is uniformly bounded and the number of closures of infinite orbits is finite. A number of examples illustrate typical situations appearing beyond the classified cases.
DOI : 10.4064/sm200-2-2
Keywords: continuous actions topological groups compact hausdorff spaces investigated which induce almost periodic functions corresponding commutative * algebra unique invariant mean group resulting averaging allows derive * valued inner product hilbert * module which serve environment describe characteristics group action lyapunov stable actions derived invariant mean phi continuous phi induced * valued inner product corresponds conditional expectation fixed point algebra action defined averaging orbits self duality hilbert * module orbits shown have cardinality stable actions compact metric spaces rise * reflexive hilbert * modules cardinality finite orbits uniformly bounded number closures infinite orbits finite number examples illustrate typical situations appearing beyond classified cases

Michael Frank  1   ; Vladimir Manuilov  2   ; Evgenij Troitsky  3

1 FB IMN HTWK Leipzig Postfach 301166 D-04251 Leipzig, Germany
2 Department of Mechanics and Mathematics Moscow State University 119991 GSP-1 Moscow, Russia and Harbin Institute of Technology Harbin, P.R. China
3 Department of Mechanics and Mathematics Moscow State University 119991 GSP-1 Moscow, Russia
@article{10_4064_sm200_2_2,
     author = {Michael Frank and Vladimir Manuilov and Evgenij Troitsky},
     title = {Hilbert $C^*$-modules from group actions:
 beyond the finite orbits case},
     journal = {Studia Mathematica},
     pages = {131--148},
     year = {2010},
     volume = {200},
     number = {2},
     doi = {10.4064/sm200-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-2/}
}
TY  - JOUR
AU  - Michael Frank
AU  - Vladimir Manuilov
AU  - Evgenij Troitsky
TI  - Hilbert $C^*$-modules from group actions:
 beyond the finite orbits case
JO  - Studia Mathematica
PY  - 2010
SP  - 131
EP  - 148
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-2/
DO  - 10.4064/sm200-2-2
LA  - en
ID  - 10_4064_sm200_2_2
ER  - 
%0 Journal Article
%A Michael Frank
%A Vladimir Manuilov
%A Evgenij Troitsky
%T Hilbert $C^*$-modules from group actions:
 beyond the finite orbits case
%J Studia Mathematica
%D 2010
%P 131-148
%V 200
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-2/
%R 10.4064/sm200-2-2
%G en
%F 10_4064_sm200_2_2
Michael Frank; Vladimir Manuilov; Evgenij Troitsky. Hilbert $C^*$-modules from group actions:
 beyond the finite orbits case. Studia Mathematica, Tome 200 (2010) no. 2, pp. 131-148. doi: 10.4064/sm200-2-2

Cité par Sources :