1Department of Mathematics University of California Riverside, CA 92521, U.S.A. 2Institute of Mathematics Jagiellonian University 30-348 Kraków, Poland
Studia Mathematica, Tome 200 (2010) no. 2, pp. 103-129
Let $V$ be an $n$-dimensional real Banach space and let
$\lambda(V)$ denote its absolute projection constant. For any $N
\in \Bbb{N}$ with $ N \geq n$ define
$$\eqalign{
\lambda_n^N = \sup\{ \lambda(V): \dim(V)= n,\, V \subset l_{\infty}^{(N)} \},\cr
\lambda_n = \sup\{ \lambda(V): \dim(V)= n \}.
\cr}$$
A well-known Grünbaum conjecture [Trans. Amer. Math. Soc. 95 (1960)] says that
$$
\lambda_2 = 4/3.
$$
König and Tomczak-Jaegermann [J. Funct. Anal. 119 (1994)] made
an attempt to prove this conjecture.
Unfortunately, their Proposition 3.1, used in the proof, is
incorrect. In this paper a complete proof of the Grünbaum
conjecture is presented
Mots-clés :
n dimensional real banach space lambda denote its absolute projection constant bbb geq define eqalign lambda sup lambda dim subset infty lambda sup lambda dim well known nbaum conjecture trans amer math soc says lambda nig tomczak jaegermann funct anal made attempt prove conjecture unfortunately their proposition proof incorrect paper complete proof nbaum conjecture presented
Affiliations des auteurs :
Bruce L. Chalmers 
1
;
Grzegorz Lewicki 
2
1
Department of Mathematics University of California Riverside, CA 92521, U.S.A.
2
Institute of Mathematics Jagiellonian University 30-348 Kraków, Poland
@article{10_4064_sm200_2_1,
author = {Bruce L. Chalmers and Grzegorz Lewicki},
title = {A proof of the {Gr\"unbaum} conjecture},
journal = {Studia Mathematica},
pages = {103--129},
year = {2010},
volume = {200},
number = {2},
doi = {10.4064/sm200-2-1},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-1/}
}
TY - JOUR
AU - Bruce L. Chalmers
AU - Grzegorz Lewicki
TI - A proof of the Grünbaum conjecture
JO - Studia Mathematica
PY - 2010
SP - 103
EP - 129
VL - 200
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-1/
DO - 10.4064/sm200-2-1
LA - de
ID - 10_4064_sm200_2_1
ER -
%0 Journal Article
%A Bruce L. Chalmers
%A Grzegorz Lewicki
%T A proof of the Grünbaum conjecture
%J Studia Mathematica
%D 2010
%P 103-129
%V 200
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-2-1/
%R 10.4064/sm200-2-1
%G de
%F 10_4064_sm200_2_1
Bruce L. Chalmers; Grzegorz Lewicki. A proof of the Grünbaum conjecture. Studia Mathematica, Tome 200 (2010) no. 2, pp. 103-129. doi: 10.4064/sm200-2-1