Sparse recovery with pre-Gaussian random matrices
Studia Mathematica, Tome 200 (2010) no. 1, pp. 91-102

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an $m \times N$ underdetermined system of linear equations with independent pre-Gaussian random coefficients satisfying simple moment conditions, it is proved that the $s$-sparse solutions of the system can be found by $\ell_1$-minimization under the optimal condition $m \ge c s \ln(e N /s)$. The main ingredient of the proof is a variation of a classical Restricted Isometry Property, where the inner norm becomes the $\ell_1$-norm and the outer norm depends on probability distributions.
DOI : 10.4064/sm200-1-6
Keywords: times underdetermined system linear equations independent pre gaussian random coefficients satisfying simple moment conditions proved s sparse solutions system found ell minimization under optimal condition main ingredient proof variation classical restricted isometry property where inner norm becomes ell norm outer norm depends probability distributions

Simon Foucart 1 ; Ming-Jun Lai 2

1 Laboratoire J.-L. Lions Université Pierre et Marie Curie 75013 Paris, France
2 Department of Mathematics University of Georgia Athens, GA 30602, U.S.A.
@article{10_4064_sm200_1_6,
     author = {Simon Foucart and Ming-Jun Lai},
     title = {Sparse recovery with  {pre-Gaussian} random matrices},
     journal = {Studia Mathematica},
     pages = {91--102},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2010},
     doi = {10.4064/sm200-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-6/}
}
TY  - JOUR
AU  - Simon Foucart
AU  - Ming-Jun Lai
TI  - Sparse recovery with  pre-Gaussian random matrices
JO  - Studia Mathematica
PY  - 2010
SP  - 91
EP  - 102
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-6/
DO  - 10.4064/sm200-1-6
LA  - en
ID  - 10_4064_sm200_1_6
ER  - 
%0 Journal Article
%A Simon Foucart
%A Ming-Jun Lai
%T Sparse recovery with  pre-Gaussian random matrices
%J Studia Mathematica
%D 2010
%P 91-102
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-6/
%R 10.4064/sm200-1-6
%G en
%F 10_4064_sm200_1_6
Simon Foucart; Ming-Jun Lai. Sparse recovery with  pre-Gaussian random matrices. Studia Mathematica, Tome 200 (2010) no. 1, pp. 91-102. doi: 10.4064/sm200-1-6

Cité par Sources :