Anisotropic classes of homogeneous pseudodifferential symbols
Studia Mathematica, Tome 200 (2010) no. 1, pp. 41-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define homogeneous classes of $x$-dependent anisotropic symbols $\dot{S}^{m}_{\gamma, \delta}(A)$ in the framework determined by an expansive dilation $A$, thus extending the existing theory for diagonal dilations. We revisit anisotropic analogues of Hörmander–Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs of their boundedness on Lebesgue and Hardy spaces by making use of the well-established Calderón–Zygmund theory on spaces of homogeneous type. We then show that $x$-dependent symbols in $\dot{S}^0_{1,1} (A)$ yield Calderón–Zygmund kernels, yet their $L^2$ boundedness fails. Finally, we prove boundedness results for the class $\dot{S}^m_{1,1} (A)$ on weighted anisotropic Besov and Triebel–Lizorkin spaces extending isotropic results of Grafakos and Torres [Michigan Math. J. 46 (1999)].
DOI : 10.4064/sm200-1-3
Keywords: define homogeneous classes x dependent anisotropic symbols dot gamma delta framework determined expansive dilation extending existing theory diagonal dilations revisit anisotropic analogues rmander mikhlin multipliers introduced rivi ark mat provide direct proofs their boundedness lebesgue hardy spaces making well established calder zygmund theory spaces homogeneous type x dependent symbols dot yield calder zygmund kernels yet their boundedness fails finally prove boundedness results class dot weighted anisotropic besov triebel lizorkin spaces extending isotropic results grafakos torres michigan math

Árpád Bényi 1 ; Marcin Bownik 2

1 Department of Mathematics Western Washington University 516 High Street Bellingham, WA 98225-9063, U.S.A.
2 Department of Mathematics University of Oregon Eugene, OR 97403-1222, U.S.A. and Institute of Mathematics Polish Academy of Sciences Abrahama 18 81-825 Sopot, Poland
@article{10_4064_sm200_1_3,
     author = {\'Arp\'ad B\'enyi and Marcin Bownik},
     title = {Anisotropic classes of homogeneous pseudodifferential symbols},
     journal = {Studia Mathematica},
     pages = {41--66},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2010},
     doi = {10.4064/sm200-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-3/}
}
TY  - JOUR
AU  - Árpád Bényi
AU  - Marcin Bownik
TI  - Anisotropic classes of homogeneous pseudodifferential symbols
JO  - Studia Mathematica
PY  - 2010
SP  - 41
EP  - 66
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-3/
DO  - 10.4064/sm200-1-3
LA  - en
ID  - 10_4064_sm200_1_3
ER  - 
%0 Journal Article
%A Árpád Bényi
%A Marcin Bownik
%T Anisotropic classes of homogeneous pseudodifferential symbols
%J Studia Mathematica
%D 2010
%P 41-66
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-3/
%R 10.4064/sm200-1-3
%G en
%F 10_4064_sm200_1_3
Árpád Bényi; Marcin Bownik. Anisotropic classes of homogeneous pseudodifferential symbols. Studia Mathematica, Tome 200 (2010) no. 1, pp. 41-66. doi: 10.4064/sm200-1-3

Cité par Sources :