Anisotropic classes of homogeneous pseudodifferential symbols
Studia Mathematica, Tome 200 (2010) no. 1, pp. 41-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define homogeneous classes of $x$-dependent
anisotropic symbols $\dot{S}^{m}_{\gamma, \delta}(A)$ in the framework determined by an expansive dilation $A$, thus
extending the existing theory for diagonal dilations.
We revisit
anisotropic analogues of Hörmander–Mikhlin multipliers introduced by Rivière [Ark. Mat. 9 (1971)] and provide direct proofs
of their boundedness on Lebesgue and Hardy spaces by making use of
the well-established Calderón–Zygmund theory on spaces of
homogeneous type. We then show that $x$-dependent symbols in
$\dot{S}^0_{1,1} (A)$ yield Calderón–Zygmund kernels, yet their
$L^2$ boundedness fails. Finally, we prove
boundedness results for the class $\dot{S}^m_{1,1} (A)$ on weighted anisotropic Besov and Triebel–Lizorkin spaces extending isotropic results of Grafakos and Torres [Michigan Math. J. 46 (1999)].
Keywords:
define homogeneous classes x dependent anisotropic symbols dot gamma delta framework determined expansive dilation extending existing theory diagonal dilations revisit anisotropic analogues rmander mikhlin multipliers introduced rivi ark mat provide direct proofs their boundedness lebesgue hardy spaces making well established calder zygmund theory spaces homogeneous type x dependent symbols dot yield calder zygmund kernels yet their boundedness fails finally prove boundedness results class dot weighted anisotropic besov triebel lizorkin spaces extending isotropic results grafakos torres michigan math
Affiliations des auteurs :
Árpád Bényi 1 ; Marcin Bownik 2
@article{10_4064_sm200_1_3,
author = {\'Arp\'ad B\'enyi and Marcin Bownik},
title = {Anisotropic classes of homogeneous pseudodifferential symbols},
journal = {Studia Mathematica},
pages = {41--66},
publisher = {mathdoc},
volume = {200},
number = {1},
year = {2010},
doi = {10.4064/sm200-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-3/}
}
TY - JOUR AU - Árpád Bényi AU - Marcin Bownik TI - Anisotropic classes of homogeneous pseudodifferential symbols JO - Studia Mathematica PY - 2010 SP - 41 EP - 66 VL - 200 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-3/ DO - 10.4064/sm200-1-3 LA - en ID - 10_4064_sm200_1_3 ER -
Árpád Bényi; Marcin Bownik. Anisotropic classes of homogeneous pseudodifferential symbols. Studia Mathematica, Tome 200 (2010) no. 1, pp. 41-66. doi: 10.4064/sm200-1-3
Cité par Sources :