Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory
Studia Mathematica, Tome 200 (2010) no. 1, pp. 1-29
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $X$ be a closed subspace of
$L^p(\mu)$, where $\mu$ is an arbitrary measure and $1 p \infty$.
Let $U$ be an invertible operator on $X$
such that
$\sup_{n\in \mathbb{Z} }\|U^n\| \infty$. Motivated by applications
in ergodic
theory,
we obtain (optimal) conditions
for the convergence of series like
$\sum_{n\ge 1} {(U^nf)}/{n^{1-\alpha}}$, $0\le \alpha 1$,
in terms of
$\|f+\cdots +U^{n-1}f\|_p$, generalizing results
for unitary (or normal) operators in $L^2(\mu)$. The proofs make
use of the spectral integration initiated by Berkson and Gillespie
and, more particularly, of results from a paper by
Berkson–Bourgain–Gillespie.
Keywords:
closed subspace where arbitrary measure infty invertible operator sup mathbb infty motivated applications ergodic theory obtain optimal conditions convergence series sum alpha alpha terms cdots n generalizing results unitary normal operators proofs make spectral integration initiated berkson gillespie particularly results paper berkson bourgain gillespie
Affiliations des auteurs :
Christophe Cuny  1
@article{10_4064_sm200_1_1,
author = {Christophe Cuny},
title = {Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory},
journal = {Studia Mathematica},
pages = {1--29},
year = {2010},
volume = {200},
number = {1},
doi = {10.4064/sm200-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-1/}
}
TY - JOUR AU - Christophe Cuny TI - Norm convergence of some power series of operators in $L^p$ with applications in ergodic theory JO - Studia Mathematica PY - 2010 SP - 1 EP - 29 VL - 200 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-1/ DO - 10.4064/sm200-1-1 LA - en ID - 10_4064_sm200_1_1 ER -
Christophe Cuny. Norm convergence of some power series of operators in $L^p$ with applications in ergodic theory. Studia Mathematica, Tome 200 (2010) no. 1, pp. 1-29. doi: 10.4064/sm200-1-1
Cité par Sources :