Norm convergence of some power series of operators in $L^p$ with applications in ergodic theory
Studia Mathematica, Tome 200 (2010) no. 1, pp. 1-29

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a closed subspace of $L^p(\mu)$, where $\mu$ is an arbitrary measure and $1 p \infty$. Let $U$ be an invertible operator on $X$ such that $\sup_{n\in \mathbb{Z} }\|U^n\| \infty$. Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like $\sum_{n\ge 1} {(U^nf)}/{n^{1-\alpha}}$, $0\le \alpha 1$, in terms of $\|f+\cdots +U^{n-1}f\|_p$, generalizing results for unitary (or normal) operators in $L^2(\mu)$. The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson–Bourgain–Gillespie.
DOI : 10.4064/sm200-1-1
Keywords: closed subspace where arbitrary measure infty invertible operator sup mathbb infty motivated applications ergodic theory obtain optimal conditions convergence series sum alpha alpha terms cdots n generalizing results unitary normal operators proofs make spectral integration initiated berkson gillespie particularly results paper berkson bourgain gillespie

Christophe Cuny 1

1 Équipe ERIM University of New Caledonia B.P. R4 98800 Nouméa, New Caledonia
@article{10_4064_sm200_1_1,
     author = {Christophe Cuny},
     title = {Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory},
     journal = {Studia Mathematica},
     pages = {1--29},
     publisher = {mathdoc},
     volume = {200},
     number = {1},
     year = {2010},
     doi = {10.4064/sm200-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-1/}
}
TY  - JOUR
AU  - Christophe Cuny
TI  - Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory
JO  - Studia Mathematica
PY  - 2010
SP  - 1
EP  - 29
VL  - 200
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-1/
DO  - 10.4064/sm200-1-1
LA  - en
ID  - 10_4064_sm200_1_1
ER  - 
%0 Journal Article
%A Christophe Cuny
%T Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory
%J Studia Mathematica
%D 2010
%P 1-29
%V 200
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm200-1-1/
%R 10.4064/sm200-1-1
%G en
%F 10_4064_sm200_1_1
Christophe Cuny. Norm convergence of some power series of operators in $L^p$
with applications in ergodic theory. Studia Mathematica, Tome 200 (2010) no. 1, pp. 1-29. doi: 10.4064/sm200-1-1

Cité par Sources :