On operator-valued cosine
sequences on UMD spaces
Studia Mathematica, Tome 199 (2010) no. 3, pp. 267-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A two-sided sequence $(c_n)_{n\in\mathbb{Z}}$ with values in a
complex unital Banach algebra is a cosine sequence if it satisfies
$c_{n+m} + c_{n-m} = 2 c_n c_m$ for any $n,m \in \mathbb{Z}$ with
$c_0$ equal to the unity of the algebra. A cosine sequence
$(c_n)_{n\in\mathbb{Z}}$ is bounded if $\sup_{n \in \mathbb{Z}} \|
c_n \| \infty$. A (bounded) group decomposition for a cosine
sequence $c = (c_n)_{n\in\mathbb{Z}}$ is a representation of $c$ as
$c_n= (b^n + b^{-n})/2$ for every $n \in \mathbb{Z}$, where $b$ is
an invertible element of the algebra (satisfying $\sup_{n \in
\mathbb{Z}} \| b^n \| \infty$, respectively). It is known that
every bounded cosine sequence possesses a universally defined group
decomposition, the so-called standard group decomposition.
Here it is shown that if $X $ is a complex UMD Banach space and,
with $\mathcal{L}(X)$ denoting the algebra of all bounded linear
operators on $X$, if $c$ is an $\mathcal{L}(X)$-valued bounded
cosine sequence, then the standard group decomposition of $c$ is
bounded.
Keywords:
two sided sequence mathbb values complex unital banach algebra cosine sequence satisfies n m mathbb equal unity algebra cosine sequence mathbb bounded sup mathbb infty bounded group decomposition cosine sequence mathbb representation n every mathbb where invertible element algebra satisfying sup mathbb infty respectively known every bounded cosine sequence possesses universally defined group decomposition so called standard group decomposition here shown complex umd banach space mathcal denoting algebra bounded linear operators mathcal valued bounded cosine sequence standard group decomposition bounded
Affiliations des auteurs :
Wojciech Chojnacki 1
@article{10_4064_sm199_3_4,
author = {Wojciech Chojnacki},
title = {On operator-valued cosine
sequences on {UMD} spaces},
journal = {Studia Mathematica},
pages = {267--278},
publisher = {mathdoc},
volume = {199},
number = {3},
year = {2010},
doi = {10.4064/sm199-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-4/}
}
Wojciech Chojnacki. On operator-valued cosine sequences on UMD spaces. Studia Mathematica, Tome 199 (2010) no. 3, pp. 267-278. doi: 10.4064/sm199-3-4
Cité par Sources :