On operator-valued cosine sequences on UMD spaces
Studia Mathematica, Tome 199 (2010) no. 3, pp. 267-278

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A two-sided sequence $(c_n)_{n\in\mathbb{Z}}$ with values in a complex unital Banach algebra is a cosine sequence if it satisfies $c_{n+m} + c_{n-m} = 2 c_n c_m$ for any $n,m \in \mathbb{Z}$ with $c_0$ equal to the unity of the algebra. A cosine sequence $(c_n)_{n\in\mathbb{Z}}$ is bounded if $\sup_{n \in \mathbb{Z}} \| c_n \| \infty$. A (bounded) group decomposition for a cosine sequence $c = (c_n)_{n\in\mathbb{Z}}$ is a representation of $c$ as $c_n= (b^n + b^{-n})/2$ for every $n \in \mathbb{Z}$, where $b$ is an invertible element of the algebra (satisfying $\sup_{n \in \mathbb{Z}} \| b^n \| \infty$, respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, the so-called standard group decomposition. Here it is shown that if $X $ is a complex UMD Banach space and, with $\mathcal{L}(X)$ denoting the algebra of all bounded linear operators on $X$, if $c$ is an $\mathcal{L}(X)$-valued bounded cosine sequence, then the standard group decomposition of $c$ is bounded.
DOI : 10.4064/sm199-3-4
Keywords: two sided sequence mathbb values complex unital banach algebra cosine sequence satisfies n m mathbb equal unity algebra cosine sequence mathbb bounded sup mathbb infty bounded group decomposition cosine sequence mathbb representation n every mathbb where invertible element algebra satisfying sup mathbb infty respectively known every bounded cosine sequence possesses universally defined group decomposition so called standard group decomposition here shown complex umd banach space mathcal denoting algebra bounded linear operators mathcal valued bounded cosine sequence standard group decomposition bounded

Wojciech Chojnacki 1

1 School of Computer Science The University of Adelaide Adelaide, SA 5005, Australia and Wydzia/l Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Dewajtis 5 01-815 Warszawa, Poland
@article{10_4064_sm199_3_4,
     author = {Wojciech Chojnacki},
     title = {On operator-valued  cosine
  sequences on {UMD} spaces},
     journal = {Studia Mathematica},
     pages = {267--278},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2010},
     doi = {10.4064/sm199-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-4/}
}
TY  - JOUR
AU  - Wojciech Chojnacki
TI  - On operator-valued  cosine
  sequences on UMD spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 267
EP  - 278
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-4/
DO  - 10.4064/sm199-3-4
LA  - en
ID  - 10_4064_sm199_3_4
ER  - 
%0 Journal Article
%A Wojciech Chojnacki
%T On operator-valued  cosine
  sequences on UMD spaces
%J Studia Mathematica
%D 2010
%P 267-278
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-4/
%R 10.4064/sm199-3-4
%G en
%F 10_4064_sm199_3_4
Wojciech Chojnacki. On operator-valued  cosine
  sequences on UMD spaces. Studia Mathematica, Tome 199 (2010) no. 3, pp. 267-278. doi: 10.4064/sm199-3-4

Cité par Sources :