A Hardy space related to the square root of the Poisson kernel
Studia Mathematica, Tome 199 (2010) no. 3, pp. 207-225
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A real-valued Hardy space $H^{1}_{\sqrt{}}(\mathbb{T}) \subseteq
L^1(\mathbb{T})$ related to the square root
of the Poisson kernel in the unit disc is defined. The space is
shown to be strictly larger than its classical counterpart $H^1(\mathbb{T})$.
A decreasing function is in $H^{1}_{\surd}(\mathbb{T})$ if and only
if the function is in the Orlicz space $L\log\log L(\mathbb{T})$.
In contrast to the case of $H^{1}(\mathbb{T})$, there is no such
characterization for general positive functions:
every Orlicz space strictly larger than $L\log L(\mathbb{T})$ contains positive functions
which do not belong to $H^{1}_{\surd}(\mathbb{T})$, and no Orlicz space of type $\Delta_2$ which
is strictly smaller than $L^1(\mathbb{T})$ contains every positive
function in $H^{1}_{\surd}(\mathbb{T})$.
Finally, we have a characterization of certain eigenfunctions of the hyperbolic Laplace operator
in terms of $H^{1}_{\surd}(\mathbb{T})$.
Keywords:
real valued hardy space sqrt mathbb subseteq mathbb related square root poisson kernel unit disc defined space shown strictly larger its classical counterpart mathbb decreasing function surd mathbb only function orlicz space log log mathbb contrast mathbb there characterization general positive functions every orlicz space strictly larger log mathbb contains positive functions which belong surd mathbb orlicz space type delta which strictly smaller mathbb contains every positive function surd mathbb finally have characterization certain eigenfunctions hyperbolic laplace operator terms surd mathbb
Affiliations des auteurs :
Jonatan Vasilis 1
@article{10_4064_sm199_3_1,
author = {Jonatan Vasilis},
title = {A {Hardy} space related to the square root of the {Poisson} kernel},
journal = {Studia Mathematica},
pages = {207--225},
publisher = {mathdoc},
volume = {199},
number = {3},
year = {2010},
doi = {10.4064/sm199-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-1/}
}
Jonatan Vasilis. A Hardy space related to the square root of the Poisson kernel. Studia Mathematica, Tome 199 (2010) no. 3, pp. 207-225. doi: 10.4064/sm199-3-1
Cité par Sources :