A Hardy space related to the square root of the Poisson kernel
Studia Mathematica, Tome 199 (2010) no. 3, pp. 207-225

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A real-valued Hardy space $H^{1}_{\sqrt{}}(\mathbb{T}) \subseteq L^1(\mathbb{T})$ related to the square root of the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger than its classical counterpart $H^1(\mathbb{T})$. A decreasing function is in $H^{1}_{\surd}(\mathbb{T})$ if and only if the function is in the Orlicz space $L\log\log L(\mathbb{T})$. In contrast to the case of $H^{1}(\mathbb{T})$, there is no such characterization for general positive functions: every Orlicz space strictly larger than $L\log L(\mathbb{T})$ contains positive functions which do not belong to $H^{1}_{\surd}(\mathbb{T})$, and no Orlicz space of type $\Delta_2$ which is strictly smaller than $L^1(\mathbb{T})$ contains every positive function in $H^{1}_{\surd}(\mathbb{T})$. Finally, we have a characterization of certain eigenfunctions of the hyperbolic Laplace operator in terms of $H^{1}_{\surd}(\mathbb{T})$.
DOI : 10.4064/sm199-3-1
Keywords: real valued hardy space sqrt mathbb subseteq mathbb related square root poisson kernel unit disc defined space shown strictly larger its classical counterpart mathbb decreasing function surd mathbb only function orlicz space log log mathbb contrast mathbb there characterization general positive functions every orlicz space strictly larger log mathbb contains positive functions which belong surd mathbb orlicz space type delta which strictly smaller mathbb contains every positive function surd mathbb finally have characterization certain eigenfunctions hyperbolic laplace operator terms surd mathbb

Jonatan Vasilis 1

1 Department of Mathematical Sciences Chalmers University of Technology SE-412 96 Göteborg, Sweden and Department of Mathematical Sciences University of Gothenburg SE-412 96 Göteborg, Sweden
@article{10_4064_sm199_3_1,
     author = {Jonatan Vasilis},
     title = {A {Hardy} space related to the square root of the {Poisson} kernel},
     journal = {Studia Mathematica},
     pages = {207--225},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2010},
     doi = {10.4064/sm199-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-1/}
}
TY  - JOUR
AU  - Jonatan Vasilis
TI  - A Hardy space related to the square root of the Poisson kernel
JO  - Studia Mathematica
PY  - 2010
SP  - 207
EP  - 225
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-1/
DO  - 10.4064/sm199-3-1
LA  - en
ID  - 10_4064_sm199_3_1
ER  - 
%0 Journal Article
%A Jonatan Vasilis
%T A Hardy space related to the square root of the Poisson kernel
%J Studia Mathematica
%D 2010
%P 207-225
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-3-1/
%R 10.4064/sm199-3-1
%G en
%F 10_4064_sm199_3_1
Jonatan Vasilis. A Hardy space related to the square root of the Poisson kernel. Studia Mathematica, Tome 199 (2010) no. 3, pp. 207-225. doi: 10.4064/sm199-3-1

Cité par Sources :