Best possible sufficient conditions for the
Fourier transform to satisfy the Lipschitz or Zygmund
condition
Studia Mathematica, Tome 199 (2010) no. 2, pp. 199-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider complex-valued functions
$f\in L^1 (\mathbb R)$, and prove sufficient conditions in terms of $f$
to ensure that the Fourier transform $\hat f$ belongs to one of
the Lipschitz classes ${\rm Lip} (\alpha)$ and ${\rm lip} (\alpha)$ for
some $0 \alpha\le 1$, or to one of the Zygmund classes $\mathop{\rm zyg}
(\alpha)$ and ${\rm zyg}(\alpha)$ for some $0\alpha\le 2$. These
sufficient conditions are best possible in the sense that they are
also necessary in the case of real-valued functions $f$ for which
either $x f(x) \ge 0$ or $f(x) \ge 0$ almost everywhere.
Keywords:
consider complex valued functions mathbb prove sufficient conditions terms ensure fourier transform hat belongs lipschitz classes lip alpha lip alpha alpha zygmund classes mathop zyg alpha zyg alpha alpha these sufficient conditions best possible sense necessary real valued functions which either almost everywhere
Affiliations des auteurs :
Ferenc Móricz 1
@article{10_4064_sm199_2_5,
author = {Ferenc M\'oricz},
title = {Best possible sufficient conditions for {the
Fourier} transform to satisfy the {Lipschitz} or {Zygmund
condition}},
journal = {Studia Mathematica},
pages = {199--205},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2010},
doi = {10.4064/sm199-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-5/}
}
TY - JOUR AU - Ferenc Móricz TI - Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition JO - Studia Mathematica PY - 2010 SP - 199 EP - 205 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-5/ DO - 10.4064/sm199-2-5 LA - en ID - 10_4064_sm199_2_5 ER -
%0 Journal Article %A Ferenc Móricz %T Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition %J Studia Mathematica %D 2010 %P 199-205 %V 199 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-5/ %R 10.4064/sm199-2-5 %G en %F 10_4064_sm199_2_5
Ferenc Móricz. Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund condition. Studia Mathematica, Tome 199 (2010) no. 2, pp. 199-205. doi: 10.4064/sm199-2-5
Cité par Sources :