We study actions of discrete groups on Hilbert $C^*$-modules induced from topological actions on compact Hausdorff spaces. We show non-amenability of actions of non-amenable and non-a-T-menable groups, provided there exists a quasi-invariant probability measure which is sufficiently close to being invariant.
Mots-clés :
study actions discrete groups hilbert * modules induced topological actions compact hausdorff spaces non amenability actions non amenable non a t menable groups provided there exists quasi invariant probability measure which sufficiently close being invariant
Affiliations des auteurs :
Ronald G. Douglas 
1
;
Piotr W. Nowak 
1
1
Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_sm199_2_4,
author = {Ronald G. Douglas and Piotr W. Nowak},
title = {Hilbert $C^*$-modules and amenable actions},
journal = {Studia Mathematica},
pages = {185--197},
year = {2010},
volume = {199},
number = {2},
doi = {10.4064/sm199-2-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-4/}
}
TY - JOUR
AU - Ronald G. Douglas
AU - Piotr W. Nowak
TI - Hilbert $C^*$-modules and amenable actions
JO - Studia Mathematica
PY - 2010
SP - 185
EP - 197
VL - 199
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-4/
DO - 10.4064/sm199-2-4
LA - fr
ID - 10_4064_sm199_2_4
ER -
%0 Journal Article
%A Ronald G. Douglas
%A Piotr W. Nowak
%T Hilbert $C^*$-modules and amenable actions
%J Studia Mathematica
%D 2010
%P 185-197
%V 199
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-4/
%R 10.4064/sm199-2-4
%G fr
%F 10_4064_sm199_2_4
Ronald G. Douglas; Piotr W. Nowak. Hilbert $C^*$-modules and amenable actions. Studia Mathematica, Tome 199 (2010) no. 2, pp. 185-197. doi: 10.4064/sm199-2-4