The norms and
singular numbers of polynomials of the classical Volterra operator
in $L_2(0,1)$
Studia Mathematica, Tome 199 (2010) no. 2, pp. 171-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The spectral problem $(s^2I-\phi(V)^{*}\phi(V))f=0$ for an arbitrary
complex polynomial $\phi$ of the classical Volterra operator $V$ in
$L_2(0,1)$ is considered. An equivalent boundary value problem for a
differential equation of order $2n$, $n=\deg(\phi)$, is constructed.
In the case $\phi(z)=1+az$ the singular numbers are explicitly
described in terms of roots of a transcendental equation, their
localization and asymptotic behavior is investigated, and an
explicit formula for the $\|{I+aV}\|_2$ is given. For all $a\neq 0$
this norm turns out to be greater than 1.
Keywords:
spectral problem i phi * phi arbitrary complex polynomial phi classical volterra operator considered equivalent boundary value problem differential equation order deg phi constructed phi singular numbers explicitly described terms roots transcendental equation their localization asymptotic behavior investigated explicit formula given neq norm turns out greater
Affiliations des auteurs :
Yuri Lyubich 1 ; Dashdondog Tsedenbayar 2
@article{10_4064_sm199_2_3,
author = {Yuri Lyubich and Dashdondog Tsedenbayar},
title = {The norms and
singular numbers of polynomials of the classical {Volterra} operator
in $L_2(0,1)$},
journal = {Studia Mathematica},
pages = {171--184},
publisher = {mathdoc},
volume = {199},
number = {2},
year = {2010},
doi = {10.4064/sm199-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/}
}
TY - JOUR AU - Yuri Lyubich AU - Dashdondog Tsedenbayar TI - The norms and singular numbers of polynomials of the classical Volterra operator in $L_2(0,1)$ JO - Studia Mathematica PY - 2010 SP - 171 EP - 184 VL - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/ DO - 10.4064/sm199-2-3 LA - en ID - 10_4064_sm199_2_3 ER -
%0 Journal Article %A Yuri Lyubich %A Dashdondog Tsedenbayar %T The norms and singular numbers of polynomials of the classical Volterra operator in $L_2(0,1)$ %J Studia Mathematica %D 2010 %P 171-184 %V 199 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/ %R 10.4064/sm199-2-3 %G en %F 10_4064_sm199_2_3
Yuri Lyubich; Dashdondog Tsedenbayar. The norms and singular numbers of polynomials of the classical Volterra operator in $L_2(0,1)$. Studia Mathematica, Tome 199 (2010) no. 2, pp. 171-184. doi: 10.4064/sm199-2-3
Cité par Sources :