The norms and singular numbers of polynomials of the classical Volterra operator in $L_2(0,1)$
Studia Mathematica, Tome 199 (2010) no. 2, pp. 171-184

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The spectral problem $(s^2I-\phi(V)^{*}\phi(V))f=0$ for an arbitrary complex polynomial $\phi$ of the classical Volterra operator $V$ in $L_2(0,1)$ is considered. An equivalent boundary value problem for a differential equation of order $2n$, $n=\deg(\phi)$, is constructed. In the case $\phi(z)=1+az$ the singular numbers are explicitly described in terms of roots of a transcendental equation, their localization and asymptotic behavior is investigated, and an explicit formula for the $\|{I+aV}\|_2$ is given. For all $a\neq 0$ this norm turns out to be greater than 1.
DOI : 10.4064/sm199-2-3
Keywords: spectral problem i phi * phi arbitrary complex polynomial phi classical volterra operator considered equivalent boundary value problem differential equation order deg phi constructed phi singular numbers explicitly described terms roots transcendental equation their localization asymptotic behavior investigated explicit formula given neq norm turns out greater

Yuri Lyubich 1 ; Dashdondog Tsedenbayar 2

1 Technion Haifa 32000, Israel
2 Department of Mathematics Mongolian University of Science and Technology P.O. Box 46/520 Ulaanbaatar, Mongolia
@article{10_4064_sm199_2_3,
     author = {Yuri Lyubich and Dashdondog Tsedenbayar},
     title = {The norms and
singular numbers of polynomials of the classical {Volterra} operator
in $L_2(0,1)$},
     journal = {Studia Mathematica},
     pages = {171--184},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2010},
     doi = {10.4064/sm199-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/}
}
TY  - JOUR
AU  - Yuri Lyubich
AU  - Dashdondog Tsedenbayar
TI  - The norms and
singular numbers of polynomials of the classical Volterra operator
in $L_2(0,1)$
JO  - Studia Mathematica
PY  - 2010
SP  - 171
EP  - 184
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/
DO  - 10.4064/sm199-2-3
LA  - en
ID  - 10_4064_sm199_2_3
ER  - 
%0 Journal Article
%A Yuri Lyubich
%A Dashdondog Tsedenbayar
%T The norms and
singular numbers of polynomials of the classical Volterra operator
in $L_2(0,1)$
%J Studia Mathematica
%D 2010
%P 171-184
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-3/
%R 10.4064/sm199-2-3
%G en
%F 10_4064_sm199_2_3
Yuri Lyubich; Dashdondog Tsedenbayar. The norms and
singular numbers of polynomials of the classical Volterra operator
in $L_2(0,1)$. Studia Mathematica, Tome 199 (2010) no. 2, pp. 171-184. doi: 10.4064/sm199-2-3

Cité par Sources :