On super-weakly compact sets and uniformly convexifiable sets
Studia Mathematica, Tome 199 (2010) no. 2, pp. 145-169

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper mainly concerns the topological nature of uniformly convexifiable sets in general Banach spaces: A sufficient and necessary condition for a bounded closed convex set $C$ of a Banach space $X$ to be uniformly convexifiable (i.e. there exists an equivalent norm on $X$ which is uniformly convex on $C$) is that the set $C$ is super-weakly compact, which is defined using a generalization of finite representability. The proofs use appropriate versions of classical theorems, such as James' finite tree theorem, Enflo's renorming technique, Grothendieck's lemma and the Davis–Figiel–Johnson–Pełczyński lemma.
DOI : 10.4064/sm199-2-2
Keywords: paper mainly concerns topological nature uniformly convexifiable sets general banach spaces sufficient necessary condition bounded closed convex set banach space uniformly convexifiable there exists equivalent norm which uniformly convex set super weakly compact which defined using generalization finite representability proofs appropriate versions classical theorems james finite tree theorem enflos renorming technique grothendiecks lemma davis figiel johnson czy ski lemma

Lixin Cheng 1 ; Qingjin Cheng 1 ; Bo Wang 1 ; Wen Zhang 1

1 Department of Mathematics Xiamen University Xiamen 361005, China
@article{10_4064_sm199_2_2,
     author = {Lixin Cheng and Qingjin Cheng and Bo Wang and Wen Zhang},
     title = {On super-weakly compact sets and
 uniformly convexifiable sets},
     journal = {Studia Mathematica},
     pages = {145--169},
     publisher = {mathdoc},
     volume = {199},
     number = {2},
     year = {2010},
     doi = {10.4064/sm199-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-2/}
}
TY  - JOUR
AU  - Lixin Cheng
AU  - Qingjin Cheng
AU  - Bo Wang
AU  - Wen Zhang
TI  - On super-weakly compact sets and
 uniformly convexifiable sets
JO  - Studia Mathematica
PY  - 2010
SP  - 145
EP  - 169
VL  - 199
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-2/
DO  - 10.4064/sm199-2-2
LA  - en
ID  - 10_4064_sm199_2_2
ER  - 
%0 Journal Article
%A Lixin Cheng
%A Qingjin Cheng
%A Bo Wang
%A Wen Zhang
%T On super-weakly compact sets and
 uniformly convexifiable sets
%J Studia Mathematica
%D 2010
%P 145-169
%V 199
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-2-2/
%R 10.4064/sm199-2-2
%G en
%F 10_4064_sm199_2_2
Lixin Cheng; Qingjin Cheng; Bo Wang; Wen Zhang. On super-weakly compact sets and
 uniformly convexifiable sets. Studia Mathematica, Tome 199 (2010) no. 2, pp. 145-169. doi: 10.4064/sm199-2-2

Cité par Sources :