A new metric invariant for Banach spaces
Studia Mathematica, Tome 199 (2010) no. 1, pp. 73-94

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if the Szlenk index of a Banach space $X$ is larger than the first infinite ordinal $\omega $ or if the Szlenk index of its dual is larger than $\omega $, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into $X$. We show that the converse is true when $X$ is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that are stable under coarse-Lipschitz embeddings and therefore under uniform homeomorphisms.
DOI : 10.4064/sm199-1-5
Keywords: szlenk index banach space larger first infinite ordinal omega szlenk index its dual larger omega tree finite sequences integers equipped hyperbolic distance metrically embeds converse assumed reflexive application exhibit classes banach spaces stable under coarse lipschitz embeddings therefore under uniform homeomorphisms

F. Baudier 1 ; N. J. Kalton 2 ; G. Lancien 1

1 Laboratoire de Mathématiques UMR 6623 Université de Franche-Comté 16 route de Gray 25030 Besançon Cedex, France
2 Department of Mathematics University of Missouri-Columbia Columbia, MO 65211, U.S.A.
@article{10_4064_sm199_1_5,
     author = {F. Baudier and N. J. Kalton and G. Lancien},
     title = {A new metric invariant for {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {73--94},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2010},
     doi = {10.4064/sm199-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-5/}
}
TY  - JOUR
AU  - F. Baudier
AU  - N. J. Kalton
AU  - G. Lancien
TI  - A new metric invariant for Banach spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 73
EP  - 94
VL  - 199
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-5/
DO  - 10.4064/sm199-1-5
LA  - en
ID  - 10_4064_sm199_1_5
ER  - 
%0 Journal Article
%A F. Baudier
%A N. J. Kalton
%A G. Lancien
%T A new metric invariant for Banach spaces
%J Studia Mathematica
%D 2010
%P 73-94
%V 199
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-5/
%R 10.4064/sm199-1-5
%G en
%F 10_4064_sm199_1_5
F. Baudier; N. J. Kalton; G. Lancien. A new metric invariant for Banach spaces. Studia Mathematica, Tome 199 (2010) no. 1, pp. 73-94. doi: 10.4064/sm199-1-5

Cité par Sources :