Mixing on rank-one transformations
Studia Mathematica, Tome 199 (2010) no. 1, pp. 43-72
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We prove that mixing on rank-one transformations is equivalent to “the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums”. In particular, all polynomial staircase transformations are mixing.
DOI : 10.4064/sm199-1-4
Keywords: prove mixing rank one transformations equivalent uniform convergence ergodic averages mean ergodic theorem subsequences partial sums particular polynomial staircase transformations mixing

Darren Creutz  1   ; Cesar E. Silva  2

1 Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, U.S.A.
2 Department of Mathematics Williams College Williamstown, MA 01267, U.S.A.
@article{10_4064_sm199_1_4,
     author = {Darren Creutz and Cesar E. Silva},
     title = {Mixing on rank-one transformations},
     journal = {Studia Mathematica},
     pages = {43--72},
     year = {2010},
     volume = {199},
     number = {1},
     doi = {10.4064/sm199-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/}
}
TY  - JOUR
AU  - Darren Creutz
AU  - Cesar E. Silva
TI  - Mixing on rank-one transformations
JO  - Studia Mathematica
PY  - 2010
SP  - 43
EP  - 72
VL  - 199
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/
DO  - 10.4064/sm199-1-4
LA  - en
ID  - 10_4064_sm199_1_4
ER  - 
%0 Journal Article
%A Darren Creutz
%A Cesar E. Silva
%T Mixing on rank-one transformations
%J Studia Mathematica
%D 2010
%P 43-72
%V 199
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/
%R 10.4064/sm199-1-4
%G en
%F 10_4064_sm199_1_4
Darren Creutz; Cesar E. Silva. Mixing on rank-one transformations. Studia Mathematica, Tome 199 (2010) no. 1, pp. 43-72. doi: 10.4064/sm199-1-4

Cité par Sources :