1Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, U.S.A. 2Department of Mathematics Williams College Williamstown, MA 01267, U.S.A.
Studia Mathematica, Tome 199 (2010) no. 1, pp. 43-72
We prove that mixing on rank-one transformations is equivalent to “the uniform convergence of ergodic averages (as in the mean ergodic theorem) over subsequences of partial sums”. In particular, all polynomial staircase transformations are mixing.
Darren Creutz 
1
;
Cesar E. Silva 
2
1
Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, U.S.A.
2
Department of Mathematics Williams College Williamstown, MA 01267, U.S.A.
@article{10_4064_sm199_1_4,
author = {Darren Creutz and Cesar E. Silva},
title = {Mixing on rank-one transformations},
journal = {Studia Mathematica},
pages = {43--72},
year = {2010},
volume = {199},
number = {1},
doi = {10.4064/sm199-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/}
}
TY - JOUR
AU - Darren Creutz
AU - Cesar E. Silva
TI - Mixing on rank-one transformations
JO - Studia Mathematica
PY - 2010
SP - 43
EP - 72
VL - 199
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/
DO - 10.4064/sm199-1-4
LA - en
ID - 10_4064_sm199_1_4
ER -
%0 Journal Article
%A Darren Creutz
%A Cesar E. Silva
%T Mixing on rank-one transformations
%J Studia Mathematica
%D 2010
%P 43-72
%V 199
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-4/
%R 10.4064/sm199-1-4
%G en
%F 10_4064_sm199_1_4
Darren Creutz; Cesar E. Silva. Mixing on rank-one transformations. Studia Mathematica, Tome 199 (2010) no. 1, pp. 43-72. doi: 10.4064/sm199-1-4