Distances to spaces of affine Baire-one functions
Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $E$ be a Banach space and let ${\cal B}_1(B_{E^*})$ and ${\mathfrak A}_1(B_{E^*})$ denote the space of all Baire-one and affine Baire-one functions on the dual unit ball $B_{E^*}$, respectively. We show that there exists a separable $L_1$-predual $E$ such that there is no quantitative relation between $\mathop{\rm dist}(f,{\cal B}_1(B_{E^*}))$ and $\mathop{\rm dist}(f,{\mathfrak A}_1(B_{E^*}))$, where $f$ is an affine function on $B_{E^*}$. If the Banach space $E$ satisfies some additional assumption, we prove the existence of some such dependence.
Keywords:
banach space cal * mathfrak * denote space baire one affine baire one functions dual unit ball * respectively there exists separable predual there quantitative relation between mathop dist cal * mathop dist mathfrak * where affine function * banach space satisfies additional assumption prove existence dependence
Affiliations des auteurs :
Jiří Spurný 1
@article{10_4064_sm199_1_3,
author = {Ji\v{r}{\'\i} Spurn\'y},
title = {Distances to spaces of affine {Baire-one} functions},
journal = {Studia Mathematica},
pages = {23--41},
year = {2010},
volume = {199},
number = {1},
doi = {10.4064/sm199-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-3/}
}
Jiří Spurný. Distances to spaces of affine Baire-one functions. Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41. doi: 10.4064/sm199-1-3
Cité par Sources :