Distances to spaces of affine Baire-one functions
Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $E$ be a Banach space and let ${\cal B}_1(B_{E^*})$ and ${\mathfrak A}_1(B_{E^*})$ denote the space of all Baire-one and affine Baire-one functions on the dual unit ball $B_{E^*}$, respectively. We show that there exists a separable $L_1$-predual $E$ such that there is no quantitative relation between $\mathop{\rm dist}(f,{\cal B}_1(B_{E^*}))$ and $\mathop{\rm dist}(f,{\mathfrak A}_1(B_{E^*}))$, where $f$ is an affine function on $B_{E^*}$. If the Banach space $E$ satisfies some additional assumption, we prove the existence of some such dependence.
DOI : 10.4064/sm199-1-3
Keywords: banach space cal * mathfrak * denote space baire one affine baire one functions dual unit ball * respectively there exists separable predual there quantitative relation between mathop dist cal * mathop dist mathfrak * where affine function * banach space satisfies additional assumption prove existence dependence

Jiří Spurný 1

1 Department of Mathematical Analysis Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75 Praha 8, Czech Republic
@article{10_4064_sm199_1_3,
     author = {Ji\v{r}{\'\i}   Spurn\'y},
     title = {Distances to spaces of affine {Baire-one} functions},
     journal = {Studia Mathematica},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2010},
     doi = {10.4064/sm199-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-3/}
}
TY  - JOUR
AU  - Jiří   Spurný
TI  - Distances to spaces of affine Baire-one functions
JO  - Studia Mathematica
PY  - 2010
SP  - 23
EP  - 41
VL  - 199
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-3/
DO  - 10.4064/sm199-1-3
LA  - en
ID  - 10_4064_sm199_1_3
ER  - 
%0 Journal Article
%A Jiří   Spurný
%T Distances to spaces of affine Baire-one functions
%J Studia Mathematica
%D 2010
%P 23-41
%V 199
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-3/
%R 10.4064/sm199-1-3
%G en
%F 10_4064_sm199_1_3
Jiří   Spurný. Distances to spaces of affine Baire-one functions. Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41. doi: 10.4064/sm199-1-3

Cité par Sources :