Distances to spaces of affine Baire-one functions
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let $E$ be a Banach space and let ${\cal B}_1(B_{E^*})$ and ${\mathfrak A}_1(B_{E^*})$ denote the space of all Baire-one and affine Baire-one functions on the dual unit ball $B_{E^*}$, respectively. We show that there exists a separable $L_1$-predual $E$ such that there is no quantitative relation between $\mathop{\rm dist}(f,{\cal B}_1(B_{E^*}))$ and $\mathop{\rm dist}(f,{\mathfrak A}_1(B_{E^*}))$, where $f$ is an affine function on $B_{E^*}$. If the Banach space $E$ satisfies some additional assumption, we prove the existence of some such dependence.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
banach space cal * mathfrak * denote space baire one affine baire one functions dual unit ball * respectively there exists separable predual there quantitative relation between mathop dist cal * mathop dist mathfrak * where affine function * banach space satisfies additional assumption prove existence dependence
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jiří Spurný 1
@article{10_4064_sm199_1_3,
     author = {Ji\v{r}{\'\i}   Spurn\'y},
     title = {Distances to spaces of affine {Baire-one} functions},
     journal = {Studia Mathematica},
     pages = {23--41},
     publisher = {mathdoc},
     volume = {199},
     number = {1},
     year = {2010},
     doi = {10.4064/sm199-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-3/}
}
                      
                      
                    Jiří Spurný. Distances to spaces of affine Baire-one functions. Studia Mathematica, Tome 199 (2010) no. 1, pp. 23-41. doi: 10.4064/sm199-1-3
Cité par Sources :
