1School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, P.R. China 2School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, P.R. China and Institute of Applied Physics and Computational Mathematics PO Box 8009, Beijing 100088, P.R. China and Department of Mathematics University of California Berkeley, CA 94720-3840, U.S.A. 3Research Center for Mathematical Sciences Kwansei Gakuin University Gakuen 2-1, Sanda 669-1337, Japan
Studia Mathematica, Tome 199 (2010) no. 1, pp. 1-16
Grafakos–Kalton [Collect. Math. 52 (2001)] discussed the
boundedness of multilinear Calderón–Zygmund operators on the
product of Hardy spaces. Then
Lerner et al. [Adv. Math. 220 (2009)] defined $A_{\vec{p}}$ weights and built
a theory of weights adapted to multilinear
Calderón–Zygmund operators. In this paper, we combine the above
results and obtain some estimates for multilinear
Calderón–Zygmund operators on weighted Hardy spaces and also
obtain a weighted multilinear version of an inequality for
multilinear fractional integrals, which is related to the classical
Trudinger inequality.
1
School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, P.R. China
2
School of Mathematical Sciences Beijing Normal University Laboratory of Mathematics and Complex Systems Ministry of Education Beijing 100875, P.R. China and Institute of Applied Physics and Computational Mathematics PO Box 8009, Beijing 100088, P.R. China and Department of Mathematics University of California Berkeley, CA 94720-3840, U.S.A.
3
Research Center for Mathematical Sciences Kwansei Gakuin University Gakuen 2-1, Sanda 669-1337, Japan
@article{10_4064_sm199_1_1,
author = {Wenjuan Li and Qingying Xue and K\^oz\^o Yabuta},
title = {Multilinear {Calder\'on{\textendash}Zygmund} operators on weighted {Hardy} spaces},
journal = {Studia Mathematica},
pages = {1--16},
year = {2010},
volume = {199},
number = {1},
doi = {10.4064/sm199-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-1/}
}
TY - JOUR
AU - Wenjuan Li
AU - Qingying Xue
AU - Kôzô Yabuta
TI - Multilinear Calderón–Zygmund operators on weighted Hardy spaces
JO - Studia Mathematica
PY - 2010
SP - 1
EP - 16
VL - 199
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-1/
DO - 10.4064/sm199-1-1
LA - en
ID - 10_4064_sm199_1_1
ER -
%0 Journal Article
%A Wenjuan Li
%A Qingying Xue
%A Kôzô Yabuta
%T Multilinear Calderón–Zygmund operators on weighted Hardy spaces
%J Studia Mathematica
%D 2010
%P 1-16
%V 199
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm199-1-1/
%R 10.4064/sm199-1-1
%G en
%F 10_4064_sm199_1_1
Wenjuan Li; Qingying Xue; Kôzô Yabuta. Multilinear Calderón–Zygmund operators on weighted Hardy spaces. Studia Mathematica, Tome 199 (2010) no. 1, pp. 1-16. doi: 10.4064/sm199-1-1