Spectral radius of weighted composition operators in $L^p$-spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We prove that for the spectral
radius of  a weighted composition operator $aT_\alpha$, acting in the space
$L^p(X,\mathcal{B},\mu)$, the following variational principle holds:
$$
\ln r(aT_\alpha)=\max_{\nu\in M^1_{\alpha,{\rm e}}}\int_X\ln|a|\,d\nu,
$$
where $X$ is a Hausdorff compact space, $\alpha:X\to X$ is a continuous mapping  preserving a Borel measure $\mu$ with 
$\mathop{\rm supp}\mu=X$, $M^1_{\alpha,{\rm e}}$ is the set of all $\alpha$-invariant
 ergodic probability measures
on~$X$, and $a:X\to \mathbb{R}$ is a continuous and $\mathcal{B}_\infty$-measurable function, where
$\mathcal{B}_\infty=\bigcap_{n=0}^\infty\alpha^{-n}(\mathcal{B})$.
This considerably extends the range of validity of the above formula, which was previously known
in the case when $\alpha$ is a homeomorphism.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
prove spectral radius weighted composition operator alpha acting space mathcal following variational principle holds alpha max alpha int where hausdorff compact space alpha continuous mapping preserving borel measure mathop supp alpha set alpha invariant ergodic probability measures mathbb continuous mathcal infty measurable function where mathcal infty bigcap infty alpha n mathcal considerably extends range validity above formula which previously known alpha homeomorphism
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Krzysztof Zajkowski 1
@article{10_4064_sm198_3_8,
     author = {Krzysztof Zajkowski},
     title = {Spectral radius of weighted composition operators in $L^p$-spaces},
     journal = {Studia Mathematica},
     pages = {301--307},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/}
}
                      
                      
                    TY - JOUR AU - Krzysztof Zajkowski TI - Spectral radius of weighted composition operators in $L^p$-spaces JO - Studia Mathematica PY - 2010 SP - 301 EP - 307 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/ DO - 10.4064/sm198-3-8 LA - en ID - 10_4064_sm198_3_8 ER -
Krzysztof Zajkowski. Spectral radius of weighted composition operators in $L^p$-spaces. Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307. doi: 10.4064/sm198-3-8
Cité par Sources :
