Spectral radius of weighted composition operators in $L^p$-spaces
Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for the spectral radius of a weighted composition operator $aT_\alpha$, acting in the space $L^p(X,\mathcal{B},\mu)$, the following variational principle holds: $$ \ln r(aT_\alpha)=\max_{\nu\in M^1_{\alpha,{\rm e}}}\int_X\ln|a|\,d\nu, $$ where $X$ is a Hausdorff compact space, $\alpha:X\to X$ is a continuous mapping preserving a Borel measure $\mu$ with $\mathop{\rm supp}\mu=X$, $M^1_{\alpha,{\rm e}}$ is the set of all $\alpha$-invariant ergodic probability measures on~$X$, and $a:X\to \mathbb{R}$ is a continuous and $\mathcal{B}_\infty$-measurable function, where $\mathcal{B}_\infty=\bigcap_{n=0}^\infty\alpha^{-n}(\mathcal{B})$. This considerably extends the range of validity of the above formula, which was previously known in the case when $\alpha$ is a homeomorphism.
DOI : 10.4064/sm198-3-8
Keywords: prove spectral radius weighted composition operator alpha acting space mathcal following variational principle holds alpha max alpha int where hausdorff compact space alpha continuous mapping preserving borel measure mathop supp alpha set alpha invariant ergodic probability measures mathbb continuous mathcal infty measurable function where mathcal infty bigcap infty alpha n mathcal considerably extends range validity above formula which previously known alpha homeomorphism

Krzysztof Zajkowski 1

1 Institute of Mathematics University of Białystok Akademicka 2 15-267 Białystok, Poland
@article{10_4064_sm198_3_8,
     author = {Krzysztof Zajkowski},
     title = {Spectral radius of weighted composition operators in $L^p$-spaces},
     journal = {Studia Mathematica},
     pages = {301--307},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/}
}
TY  - JOUR
AU  - Krzysztof Zajkowski
TI  - Spectral radius of weighted composition operators in $L^p$-spaces
JO  - Studia Mathematica
PY  - 2010
SP  - 301
EP  - 307
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/
DO  - 10.4064/sm198-3-8
LA  - en
ID  - 10_4064_sm198_3_8
ER  - 
%0 Journal Article
%A Krzysztof Zajkowski
%T Spectral radius of weighted composition operators in $L^p$-spaces
%J Studia Mathematica
%D 2010
%P 301-307
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/
%R 10.4064/sm198-3-8
%G en
%F 10_4064_sm198_3_8
Krzysztof Zajkowski. Spectral radius of weighted composition operators in $L^p$-spaces. Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307. doi: 10.4064/sm198-3-8

Cité par Sources :