Spectral radius of weighted composition operators in $L^p$-spaces
Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that for the spectral
radius of a weighted composition operator $aT_\alpha$, acting in the space
$L^p(X,\mathcal{B},\mu)$, the following variational principle holds:
$$
\ln r(aT_\alpha)=\max_{\nu\in M^1_{\alpha,{\rm e}}}\int_X\ln|a|\,d\nu,
$$
where $X$ is a Hausdorff compact space, $\alpha:X\to X$ is a continuous mapping preserving a Borel measure $\mu$ with
$\mathop{\rm supp}\mu=X$, $M^1_{\alpha,{\rm e}}$ is the set of all $\alpha$-invariant
ergodic probability measures
on~$X$, and $a:X\to \mathbb{R}$ is a continuous and $\mathcal{B}_\infty$-measurable function, where
$\mathcal{B}_\infty=\bigcap_{n=0}^\infty\alpha^{-n}(\mathcal{B})$.
This considerably extends the range of validity of the above formula, which was previously known
in the case when $\alpha$ is a homeomorphism.
Keywords:
prove spectral radius weighted composition operator alpha acting space mathcal following variational principle holds alpha max alpha int where hausdorff compact space alpha continuous mapping preserving borel measure mathop supp alpha set alpha invariant ergodic probability measures mathbb continuous mathcal infty measurable function where mathcal infty bigcap infty alpha n mathcal considerably extends range validity above formula which previously known alpha homeomorphism
Affiliations des auteurs :
Krzysztof Zajkowski  1
@article{10_4064_sm198_3_8,
author = {Krzysztof Zajkowski},
title = {Spectral radius of weighted composition operators in $L^p$-spaces},
journal = {Studia Mathematica},
pages = {301--307},
year = {2010},
volume = {198},
number = {3},
doi = {10.4064/sm198-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-8/}
}
Krzysztof Zajkowski. Spectral radius of weighted composition operators in $L^p$-spaces. Studia Mathematica, Tome 198 (2010) no. 3, pp. 301-307. doi: 10.4064/sm198-3-8
Cité par Sources :