Spectraloid operator polynomials, the approximate numerical range and an Eneström–Kakeya theorem in Hilbert space
Studia Mathematica, Tome 198 (2010) no. 3, pp. 279-300

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study a class of operator polynomials in Hilbert space which are spectraloid in the sense that spectral radius and numerical radius coincide. The focus is on the spectrum in the boundary of the numerical range. As an application, the Eneström–Kakeya–Hurwitz theorem on zeros of real polynomials is generalized to Hilbert space.
DOI : 10.4064/sm198-3-7
Keywords: study class operator polynomials hilbert space which spectraloid sense spectral radius numerical radius coincide focus spectrum boundary numerical range application enestr kakeya hurwitz theorem zeros real polynomials generalized hilbert space

Jan Swoboda 1 ; Harald K. Wimmer 2

1 Max-Planck-Institut für Mathematik D-53111 Bonn, Germany
2 Mathematisches Institut Universität Würzburg D-97074 Würzburg, Germany
@article{10_4064_sm198_3_7,
     author = {Jan Swoboda and Harald K. Wimmer},
     title = {Spectraloid operator polynomials, the
 approximate numerical range and an
 {Enestr\"om{\textendash}Kakeya} theorem in {Hilbert} space},
     journal = {Studia Mathematica},
     pages = {279--300},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/}
}
TY  - JOUR
AU  - Jan Swoboda
AU  - Harald K. Wimmer
TI  - Spectraloid operator polynomials, the
 approximate numerical range and an
 Eneström–Kakeya theorem in Hilbert space
JO  - Studia Mathematica
PY  - 2010
SP  - 279
EP  - 300
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/
DO  - 10.4064/sm198-3-7
LA  - en
ID  - 10_4064_sm198_3_7
ER  - 
%0 Journal Article
%A Jan Swoboda
%A Harald K. Wimmer
%T Spectraloid operator polynomials, the
 approximate numerical range and an
 Eneström–Kakeya theorem in Hilbert space
%J Studia Mathematica
%D 2010
%P 279-300
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/
%R 10.4064/sm198-3-7
%G en
%F 10_4064_sm198_3_7
Jan Swoboda; Harald K. Wimmer. Spectraloid operator polynomials, the
 approximate numerical range and an
 Eneström–Kakeya theorem in Hilbert space. Studia Mathematica, Tome 198 (2010) no. 3, pp. 279-300. doi: 10.4064/sm198-3-7

Cité par Sources :