Spectraloid operator polynomials, the
 approximate numerical range and an
 Eneström–Kakeya theorem in Hilbert space
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 198 (2010) no. 3, pp. 279-300
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study a class of operator polynomials in Hilbert space which are spectraloid in the sense that spectral radius and numerical radius coincide. The focus is on the spectrum in the boundary of the numerical range. As an application, the Eneström–Kakeya–Hurwitz theorem on zeros of real polynomials is generalized to Hilbert space.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
study class operator polynomials hilbert space which spectraloid sense spectral radius numerical radius coincide focus spectrum boundary numerical range application enestr kakeya hurwitz theorem zeros real polynomials generalized hilbert space
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jan Swoboda 1 ; Harald K. Wimmer 2
@article{10_4064_sm198_3_7,
     author = {Jan Swoboda and Harald K. Wimmer},
     title = {Spectraloid operator polynomials, the
 approximate numerical range and an
 {Enestr\"om{\textendash}Kakeya} theorem in {Hilbert} space},
     journal = {Studia Mathematica},
     pages = {279--300},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/}
}
                      
                      
                    TY - JOUR AU - Jan Swoboda AU - Harald K. Wimmer TI - Spectraloid operator polynomials, the approximate numerical range and an Eneström–Kakeya theorem in Hilbert space JO - Studia Mathematica PY - 2010 SP - 279 EP - 300 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/ DO - 10.4064/sm198-3-7 LA - en ID - 10_4064_sm198_3_7 ER -
%0 Journal Article %A Jan Swoboda %A Harald K. Wimmer %T Spectraloid operator polynomials, the approximate numerical range and an Eneström–Kakeya theorem in Hilbert space %J Studia Mathematica %D 2010 %P 279-300 %V 198 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-7/ %R 10.4064/sm198-3-7 %G en %F 10_4064_sm198_3_7
Jan Swoboda; Harald K. Wimmer. Spectraloid operator polynomials, the approximate numerical range and an Eneström–Kakeya theorem in Hilbert space. Studia Mathematica, Tome 198 (2010) no. 3, pp. 279-300. doi: 10.4064/sm198-3-7
Cité par Sources :
