Optimality of the range for which equivalence between
certain measures of smoothness holds
Studia Mathematica, Tome 198 (2010) no. 3, pp. 271-277
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Recently it was proved for $1 p \infty $ that $\omega ^m(f,t)_p,$ a modulus of smoothness on the unit sphere, and $\widetilde{K}_m(f,t^m)_p,$ a $K$-functional involving the Laplace-Beltrami operator, are equivalent. It will be shown that the range $1 p \infty $ is optimal; that is, the equivalence $\omega ^m(f,t)_p\approx \widetilde{K}_m(f,t^r)_p$ does not hold either for $p=\infty $ or for $p=1.$
Keywords:
recently proved infty omega modulus smoothness unit sphere widetilde m k functional involving laplace beltrami operator equivalent shown range infty optimal equivalence omega approx widetilde r does either infty
Affiliations des auteurs :
Z. Ditzian 1
@article{10_4064_sm198_3_6,
author = {Z. Ditzian},
title = {Optimality of the range for which equivalence between
certain measures of smoothness holds},
journal = {Studia Mathematica},
pages = {271--277},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2010},
doi = {10.4064/sm198-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-6/}
}
TY - JOUR AU - Z. Ditzian TI - Optimality of the range for which equivalence between certain measures of smoothness holds JO - Studia Mathematica PY - 2010 SP - 271 EP - 277 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-6/ DO - 10.4064/sm198-3-6 LA - en ID - 10_4064_sm198_3_6 ER -
Z. Ditzian. Optimality of the range for which equivalence between certain measures of smoothness holds. Studia Mathematica, Tome 198 (2010) no. 3, pp. 271-277. doi: 10.4064/sm198-3-6
Cité par Sources :