On class A operators
Studia Mathematica, Tome 198 (2010) no. 3, pp. 249-260

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
DOI : 10.4064/sm198-3-4
Keywords: every class operator has scalar extension particular operators rich spectra have nontrivial invariant subspaces spectral properties scalar extension class operator finally every class operator nonhypertransitive

Sungeun Jung 1 ; Eungil Ko 1 ; Mee-Jung Lee 1

1 Department of Mathematics Ewha Women's University 120-750 Seoul, Korea
@article{10_4064_sm198_3_4,
     author = {Sungeun Jung and Eungil Ko and Mee-Jung Lee},
     title = {On class {A} operators},
     journal = {Studia Mathematica},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/}
}
TY  - JOUR
AU  - Sungeun Jung
AU  - Eungil Ko
AU  - Mee-Jung Lee
TI  - On class A operators
JO  - Studia Mathematica
PY  - 2010
SP  - 249
EP  - 260
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/
DO  - 10.4064/sm198-3-4
LA  - en
ID  - 10_4064_sm198_3_4
ER  - 
%0 Journal Article
%A Sungeun Jung
%A Eungil Ko
%A Mee-Jung Lee
%T On class A operators
%J Studia Mathematica
%D 2010
%P 249-260
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/
%R 10.4064/sm198-3-4
%G en
%F 10_4064_sm198_3_4
Sungeun Jung; Eungil Ko; Mee-Jung Lee. On class A operators. Studia Mathematica, Tome 198 (2010) no. 3, pp. 249-260. doi: 10.4064/sm198-3-4

Cité par Sources :