On class A operators
Studia Mathematica, Tome 198 (2010) no. 3, pp. 249-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
Keywords:
every class operator has scalar extension particular operators rich spectra have nontrivial invariant subspaces spectral properties scalar extension class operator finally every class operator nonhypertransitive
Affiliations des auteurs :
Sungeun Jung 1 ; Eungil Ko 1 ; Mee-Jung Lee 1
@article{10_4064_sm198_3_4,
author = {Sungeun Jung and Eungil Ko and Mee-Jung Lee},
title = {On class {A} operators},
journal = {Studia Mathematica},
pages = {249--260},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2010},
doi = {10.4064/sm198-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/}
}
Sungeun Jung; Eungil Ko; Mee-Jung Lee. On class A operators. Studia Mathematica, Tome 198 (2010) no. 3, pp. 249-260. doi: 10.4064/sm198-3-4
Cité par Sources :