We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.
Keywords:
every class operator has scalar extension particular operators rich spectra have nontrivial invariant subspaces spectral properties scalar extension class operator finally every class operator nonhypertransitive
@article{10_4064_sm198_3_4,
author = {Sungeun Jung and Eungil Ko and Mee-Jung Lee},
title = {On class {A} operators},
journal = {Studia Mathematica},
pages = {249--260},
year = {2010},
volume = {198},
number = {3},
doi = {10.4064/sm198-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/}
}
TY - JOUR
AU - Sungeun Jung
AU - Eungil Ko
AU - Mee-Jung Lee
TI - On class A operators
JO - Studia Mathematica
PY - 2010
SP - 249
EP - 260
VL - 198
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/
DO - 10.4064/sm198-3-4
LA - en
ID - 10_4064_sm198_3_4
ER -
%0 Journal Article
%A Sungeun Jung
%A Eungil Ko
%A Mee-Jung Lee
%T On class A operators
%J Studia Mathematica
%D 2010
%P 249-260
%V 198
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-4/
%R 10.4064/sm198-3-4
%G en
%F 10_4064_sm198_3_4
Sungeun Jung; Eungil Ko; Mee-Jung Lee. On class A operators. Studia Mathematica, Tome 198 (2010) no. 3, pp. 249-260. doi: 10.4064/sm198-3-4