Rademacher functions in Cesàro type spaces
Studia Mathematica, Tome 198 (2010) no. 3, pp. 235-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Rademacher sums are investigated in the
Cesàro spaces ${\rm Ces}_p$ $(1\le p\le \infty)$ and in the weighted
Korenblyum–Kre\uın–Levin spaces $K_{p, w}$ on $[0, 1]$. They span $l_2$ space
in ${\rm Ces}_p$ for any $1\le p \infty$ and in $K_{p, w}$ if
and only if the weight $w$ is larger than $t \log_2^{p/2} ({2}/{t})$ on $(0, 1)$.
Moreover, the span of the Rademachers is not complemented in ${\rm Ces}_p$ for any
$1\le p \infty$ or in $K_{1, w}$ for any quasi-concave
weight $w$. In the case when $p > 1$ and when $w$ is such that the span of the Rademacher
functions is isomorphic to $l_2$, this span is a complemented subspace in $K_{p,w}$.
Keywords:
rademacher sums investigated ces spaces ces infty weighted korenblyum kre levin spaces span space ces infty only weight larger log moreover span rademachers complemented ces infty quasi concave weight span rademacher functions isomorphic span complemented subspace
Affiliations des auteurs :
Sergei V. Astashkin 1 ; Lech Maligranda 2
@article{10_4064_sm198_3_3,
author = {Sergei V. Astashkin and Lech Maligranda},
title = {Rademacher functions in {Ces\`aro} type spaces},
journal = {Studia Mathematica},
pages = {235--247},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2010},
doi = {10.4064/sm198-3-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-3/}
}
TY - JOUR AU - Sergei V. Astashkin AU - Lech Maligranda TI - Rademacher functions in Cesàro type spaces JO - Studia Mathematica PY - 2010 SP - 235 EP - 247 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-3/ DO - 10.4064/sm198-3-3 LA - en ID - 10_4064_sm198_3_3 ER -
Sergei V. Astashkin; Lech Maligranda. Rademacher functions in Cesàro type spaces. Studia Mathematica, Tome 198 (2010) no. 3, pp. 235-247. doi: 10.4064/sm198-3-3
Cité par Sources :