Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations
Studia Mathematica, Tome 198 (2010) no. 3, pp. 207-219

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study Fourier integral operators of Hörmander's type acting on the spaces $\mathcal F L^p(\mathbb R^d)_{\rm comp} $, $1\leq p\leq\infty$, of compactly supported distributions whose Fourier transform is in $L^p$. We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank $r$ of the Hessian of the phase ${\mit\Phi}(x,\eta)$ with respect to the space variables $x$. Indeed, we show that operators of order $m=-r|1/2-1/p|$ are bounded on $\mathcal F L^p(\mathbb R^d)_{\rm comp} $ if the mapping $x\mapsto\nabla_x{\mit\Phi}(x,\eta)$ is constant on the fibres, of codimension $r$, of an affine fibration.
DOI : 10.4064/sm198-3-1
Keywords: study fourier integral operators rmanders type acting spaces mathcal mathbb comp leq leq infty compactly supported distributions whose fourier transform sharp loss derivatives operator bounded these spaces related rank hessian phase mit phi eta respect space variables indeed operators order r bounded mathcal mathbb comp mapping mapsto nabla mit phi eta constant fibres codimension affine fibration

Fabio Nicola 1

1 Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi 24 10129 Torino, Italy
@article{10_4064_sm198_3_1,
     author = {Fabio Nicola},
     title = {Boundedness of {Fourier} integral operators on {Fourier} {Lebesgue} spaces and affine
fibrations},
     journal = {Studia Mathematica},
     pages = {207--219},
     publisher = {mathdoc},
     volume = {198},
     number = {3},
     year = {2010},
     doi = {10.4064/sm198-3-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-1/}
}
TY  - JOUR
AU  - Fabio Nicola
TI  - Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine
fibrations
JO  - Studia Mathematica
PY  - 2010
SP  - 207
EP  - 219
VL  - 198
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-1/
DO  - 10.4064/sm198-3-1
LA  - en
ID  - 10_4064_sm198_3_1
ER  - 
%0 Journal Article
%A Fabio Nicola
%T Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine
fibrations
%J Studia Mathematica
%D 2010
%P 207-219
%V 198
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-1/
%R 10.4064/sm198-3-1
%G en
%F 10_4064_sm198_3_1
Fabio Nicola. Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine
fibrations. Studia Mathematica, Tome 198 (2010) no. 3, pp. 207-219. doi: 10.4064/sm198-3-1

Cité par Sources :