Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine
fibrations
Studia Mathematica, Tome 198 (2010) no. 3, pp. 207-219
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study Fourier
integral operators of
Hörmander's type acting on the
spaces $\mathcal F L^p(\mathbb R^d)_{\rm comp} $, $1\leq p\leq\infty$, of
compactly supported distributions whose
Fourier transform is in $L^p$. We show
that the sharp loss of derivatives for
such an operator to be bounded on these
spaces is related to the rank $r$ of
the Hessian of the phase ${\mit\Phi}(x,\eta)$
with respect to the space variables
$x$. Indeed, we show that operators of
order $m=-r|1/2-1/p|$ are bounded on
$\mathcal F L^p(\mathbb R^d)_{\rm comp} $ if the mapping
$x\mapsto\nabla_x{\mit\Phi}(x,\eta)$ is
constant on the fibres, of codimension
$r$, of an affine fibration.
Keywords:
study fourier integral operators rmanders type acting spaces mathcal mathbb comp leq leq infty compactly supported distributions whose fourier transform sharp loss derivatives operator bounded these spaces related rank hessian phase mit phi eta respect space variables indeed operators order r bounded mathcal mathbb comp mapping mapsto nabla mit phi eta constant fibres codimension affine fibration
Affiliations des auteurs :
Fabio Nicola 1
@article{10_4064_sm198_3_1,
author = {Fabio Nicola},
title = {Boundedness of {Fourier} integral operators on {Fourier} {Lebesgue} spaces and affine
fibrations},
journal = {Studia Mathematica},
pages = {207--219},
publisher = {mathdoc},
volume = {198},
number = {3},
year = {2010},
doi = {10.4064/sm198-3-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-1/}
}
TY - JOUR AU - Fabio Nicola TI - Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations JO - Studia Mathematica PY - 2010 SP - 207 EP - 219 VL - 198 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-3-1/ DO - 10.4064/sm198-3-1 LA - en ID - 10_4064_sm198_3_1 ER -
Fabio Nicola. Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations. Studia Mathematica, Tome 198 (2010) no. 3, pp. 207-219. doi: 10.4064/sm198-3-1
Cité par Sources :