Uniform convergence of the greedy algorithm with respect to the Walsh
system
Studia Mathematica, Tome 198 (2010) no. 2, pp. 197-206
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any $0 \epsilon1$, $p\geq 1$ and each function $f\in
L^{p}[0,1] $ one can find a function $g\in L^{\infty}[0,1)$ with
${\rm mes}\{x\in [0,1) : g\neq f\}\epsilon$ such that its greedy
algorithm with respect to the Walsh system converges uniformly on
$[0,1)$ and the sequence $\{|c_{k}(g)|: k\in {\rm spec}(g)\}$ is
decreasing, where $\{c_{k}(g)\}$ is the sequence of
Fourier coefficients of $g$ with respect to the Walsh system.
Keywords:
epsilon geq each function function infty mes neq epsilon its greedy algorithm respect walsh system converges uniformly sequence spec decreasing where sequence fourier coefficients respect walsh system
Affiliations des auteurs :
Martin Grigoryan  1
@article{10_4064_sm198_2_6,
author = {Martin Grigoryan},
title = {Uniform convergence of the greedy algorithm with respect to the {Walsh
system}},
journal = {Studia Mathematica},
pages = {197--206},
year = {2010},
volume = {198},
number = {2},
doi = {10.4064/sm198-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-6/}
}
TY - JOUR AU - Martin Grigoryan TI - Uniform convergence of the greedy algorithm with respect to the Walsh system JO - Studia Mathematica PY - 2010 SP - 197 EP - 206 VL - 198 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-6/ DO - 10.4064/sm198-2-6 LA - en ID - 10_4064_sm198_2_6 ER -
Martin Grigoryan. Uniform convergence of the greedy algorithm with respect to the Walsh system. Studia Mathematica, Tome 198 (2010) no. 2, pp. 197-206. doi: 10.4064/sm198-2-6
Cité par Sources :