Uniform convergence of the greedy algorithm with respect to the Walsh system
Studia Mathematica, Tome 198 (2010) no. 2, pp. 197-206

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any $0 \epsilon1$, $p\geq 1$ and each function $f\in L^{p}[0,1] $ one can find a function $g\in L^{\infty}[0,1)$ with ${\rm mes}\{x\in [0,1) : g\neq f\}\epsilon$ such that its greedy algorithm with respect to the Walsh system converges uniformly on $[0,1)$ and the sequence $\{|c_{k}(g)|: k\in {\rm spec}(g)\}$ is decreasing, where $\{c_{k}(g)\}$ is the sequence of Fourier coefficients of $g$ with respect to the Walsh system.
DOI : 10.4064/sm198-2-6
Keywords: epsilon geq each function function infty mes neq epsilon its greedy algorithm respect walsh system converges uniformly sequence spec decreasing where sequence fourier coefficients respect walsh system

Martin Grigoryan 1

1 Yerevan State University 0025 Yerevan, Armenia
@article{10_4064_sm198_2_6,
     author = {Martin Grigoryan},
     title = {Uniform convergence of the greedy algorithm with respect to the {Walsh
system}},
     journal = {Studia Mathematica},
     pages = {197--206},
     publisher = {mathdoc},
     volume = {198},
     number = {2},
     year = {2010},
     doi = {10.4064/sm198-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-6/}
}
TY  - JOUR
AU  - Martin Grigoryan
TI  - Uniform convergence of the greedy algorithm with respect to the Walsh
system
JO  - Studia Mathematica
PY  - 2010
SP  - 197
EP  - 206
VL  - 198
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-6/
DO  - 10.4064/sm198-2-6
LA  - en
ID  - 10_4064_sm198_2_6
ER  - 
%0 Journal Article
%A Martin Grigoryan
%T Uniform convergence of the greedy algorithm with respect to the Walsh
system
%J Studia Mathematica
%D 2010
%P 197-206
%V 198
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-2-6/
%R 10.4064/sm198-2-6
%G en
%F 10_4064_sm198_2_6
Martin Grigoryan. Uniform convergence of the greedy algorithm with respect to the Walsh
system. Studia Mathematica, Tome 198 (2010) no. 2, pp. 197-206. doi: 10.4064/sm198-2-6

Cité par Sources :