Vector integration and the Grothendieck inequality
Studia Mathematica, Tome 198 (2010) no. 1, pp. 85-103 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We relate the Grothendieck inequality to the theory of vector measures and show that the integral of an inner product with respect to a bimeasure can be computed in an iterative way. We then show an application to the theory of bounded linear operators.
DOI : 10.4064/sm198-1-6
Keywords: relate grothendieck inequality theory vector measures integral inner product respect bimeasure computed iterative application theory bounded linear operators

Adam Bowers  1

1 Department of Mathematics University of Missouri Columbia, MO 65211, U.S.A.
@article{10_4064_sm198_1_6,
     author = {Adam Bowers},
     title = {Vector integration and the {Grothendieck} inequality},
     journal = {Studia Mathematica},
     pages = {85--103},
     year = {2010},
     volume = {198},
     number = {1},
     doi = {10.4064/sm198-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-6/}
}
TY  - JOUR
AU  - Adam Bowers
TI  - Vector integration and the Grothendieck inequality
JO  - Studia Mathematica
PY  - 2010
SP  - 85
EP  - 103
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-6/
DO  - 10.4064/sm198-1-6
LA  - en
ID  - 10_4064_sm198_1_6
ER  - 
%0 Journal Article
%A Adam Bowers
%T Vector integration and the Grothendieck inequality
%J Studia Mathematica
%D 2010
%P 85-103
%V 198
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-6/
%R 10.4064/sm198-1-6
%G en
%F 10_4064_sm198_1_6
Adam Bowers. Vector integration and the Grothendieck inequality. Studia Mathematica, Tome 198 (2010) no. 1, pp. 85-103. doi: 10.4064/sm198-1-6

Cité par Sources :