Universal zero solutions of linear partial differential operators
Studia Mathematica, Tome 198 (2010) no. 1, pp. 33-51 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

A generalized approach to several universality results is given by replacing holomorphic or harmonic functions by zero solutions of arbitrary linear partial differential operators. Instead of the approximation theorems of Runge and others, we use an approximation theorem of Hörmander.
DOI : 10.4064/sm198-1-2
Keywords: generalized approach several universality results given replacing holomorphic harmonic functions zero solutions arbitrary linear partial differential operators instead approximation theorems runge others approximation theorem rmander

Thomas Kalmes 1 ; Markus Niess 2

1 FB IV - Mathematik Universität Trier 54286 Trier, Germany
2 Mathematisch-Geographische Fakultät Katholische Universität Eichstätt-Ingolstadt D-85071 Eichstätt, Germany
@article{10_4064_sm198_1_2,
     author = {Thomas Kalmes and Markus Niess},
     title = {Universal zero solutions of linear partial differential operators},
     journal = {Studia Mathematica},
     pages = {33--51},
     year = {2010},
     volume = {198},
     number = {1},
     doi = {10.4064/sm198-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/}
}
TY  - JOUR
AU  - Thomas Kalmes
AU  - Markus Niess
TI  - Universal zero solutions of linear partial differential operators
JO  - Studia Mathematica
PY  - 2010
SP  - 33
EP  - 51
VL  - 198
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/
DO  - 10.4064/sm198-1-2
LA  - en
ID  - 10_4064_sm198_1_2
ER  - 
%0 Journal Article
%A Thomas Kalmes
%A Markus Niess
%T Universal zero solutions of linear partial differential operators
%J Studia Mathematica
%D 2010
%P 33-51
%V 198
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/
%R 10.4064/sm198-1-2
%G en
%F 10_4064_sm198_1_2
Thomas Kalmes; Markus Niess. Universal zero solutions of linear partial differential operators. Studia Mathematica, Tome 198 (2010) no. 1, pp. 33-51. doi: 10.4064/sm198-1-2

Cité par Sources :