A generalized approach to several universality results is given by replacing holomorphic or harmonic functions by zero solutions of arbitrary linear partial differential operators. Instead of the approximation theorems of Runge and others, we use an approximation theorem of Hörmander.
@article{10_4064_sm198_1_2,
author = {Thomas Kalmes and Markus Niess},
title = {Universal zero solutions of linear partial differential operators},
journal = {Studia Mathematica},
pages = {33--51},
year = {2010},
volume = {198},
number = {1},
doi = {10.4064/sm198-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/}
}
TY - JOUR
AU - Thomas Kalmes
AU - Markus Niess
TI - Universal zero solutions of linear partial differential operators
JO - Studia Mathematica
PY - 2010
SP - 33
EP - 51
VL - 198
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/
DO - 10.4064/sm198-1-2
LA - en
ID - 10_4064_sm198_1_2
ER -
%0 Journal Article
%A Thomas Kalmes
%A Markus Niess
%T Universal zero solutions of linear partial differential operators
%J Studia Mathematica
%D 2010
%P 33-51
%V 198
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/
%R 10.4064/sm198-1-2
%G en
%F 10_4064_sm198_1_2
Thomas Kalmes; Markus Niess. Universal zero solutions of linear partial differential operators. Studia Mathematica, Tome 198 (2010) no. 1, pp. 33-51. doi: 10.4064/sm198-1-2