Universal zero solutions of linear partial differential operators
Studia Mathematica, Tome 198 (2010) no. 1, pp. 33-51
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A generalized approach to several universality results is given by replacing holomorphic or harmonic functions by zero solutions of arbitrary linear partial differential operators. Instead of the approximation theorems of Runge and others, we use an approximation theorem of Hörmander.
Keywords:
generalized approach several universality results given replacing holomorphic harmonic functions zero solutions arbitrary linear partial differential operators instead approximation theorems runge others approximation theorem rmander
Affiliations des auteurs :
Thomas Kalmes 1 ; Markus Niess 2
@article{10_4064_sm198_1_2,
author = {Thomas Kalmes and Markus Niess},
title = {Universal zero solutions of linear partial differential operators},
journal = {Studia Mathematica},
pages = {33--51},
year = {2010},
volume = {198},
number = {1},
doi = {10.4064/sm198-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/}
}
TY - JOUR AU - Thomas Kalmes AU - Markus Niess TI - Universal zero solutions of linear partial differential operators JO - Studia Mathematica PY - 2010 SP - 33 EP - 51 VL - 198 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm198-1-2/ DO - 10.4064/sm198-1-2 LA - en ID - 10_4064_sm198_1_2 ER -
Thomas Kalmes; Markus Niess. Universal zero solutions of linear partial differential operators. Studia Mathematica, Tome 198 (2010) no. 1, pp. 33-51. doi: 10.4064/sm198-1-2
Cité par Sources :