For $p\geq 1$, a set $K$ in a Banach space $X$ is said to be relatively $p$-compact if there exists a $p$-summable sequence $(x_n)$ in $X$ with $K\subseteq
\{\sum_n\alpha_nx_n : (\alpha_n)\in B_{\ell_{p'}}\}$. We prove that an operator $T\colon X\rightarrow Y$ is $p$-compact (i.e., $T$ maps bounded sets to relatively $p$-compact sets) iff $T^*$ is quasi $p$-nuclear. Further, we characterize $p$-summing operators as those operators whose adjoints map relatively compact sets to relatively $p$-compact sets.
Keywords:
geq set banach space said relatively p compact there exists p summable sequence subseteq sum alpha alpha ell prove operator colon rightarrow p compact maps bounded sets relatively p compact sets * quasi p nuclear further characterize p summing operators those operators whose adjoints map relatively compact sets relatively p compact sets
Affiliations des auteurs :
J. M. Delgado 
1
;
C. Piñeiro 
1
;
E. Serrano 
1
1
Departamento de Matemáticas Campus Universitario del Carmen Universidad de Huelva Avda. de las Fuerzas Armadas s//n 21071 Huelva, Spain
@article{10_4064_sm197_3_6,
author = {J. M. Delgado and C. Pi\~neiro and E. Serrano},
title = {Operators whose adjoints are quasi $p$-nuclear},
journal = {Studia Mathematica},
pages = {291--304},
year = {2010},
volume = {197},
number = {3},
doi = {10.4064/sm197-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-6/}
}
TY - JOUR
AU - J. M. Delgado
AU - C. Piñeiro
AU - E. Serrano
TI - Operators whose adjoints are quasi $p$-nuclear
JO - Studia Mathematica
PY - 2010
SP - 291
EP - 304
VL - 197
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-6/
DO - 10.4064/sm197-3-6
LA - en
ID - 10_4064_sm197_3_6
ER -
%0 Journal Article
%A J. M. Delgado
%A C. Piñeiro
%A E. Serrano
%T Operators whose adjoints are quasi $p$-nuclear
%J Studia Mathematica
%D 2010
%P 291-304
%V 197
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-6/
%R 10.4064/sm197-3-6
%G en
%F 10_4064_sm197_3_6
J. M. Delgado; C. Piñeiro; E. Serrano. Operators whose adjoints are quasi $p$-nuclear. Studia Mathematica, Tome 197 (2010) no. 3, pp. 291-304. doi: 10.4064/sm197-3-6