The joint essential numerical range, compact perturbations, and the Olsen problem
Studia Mathematica, Tome 197 (2010) no. 3, pp. 275-290

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T_1,\ldots,T_n$ be bounded linear operators on a complex Hilbert space $H$. Then there are compact operators $K_1,\dots,K_n\in B(H)$ such that the closure of the joint numerical range of the $n$-tuple $(T_1-K_1,\ldots,T_n-K_n)$ equals the joint essential numerical range of $(T_1,\ldots,T_n)$. This generalizes the corresponding result for $n=1$.We also show that if $S\in B(H)$ and $n\in\mathbb N$ then there exists a compact operator $K\in B(H)$ such that $\|(S-K)^n\|=\|S^n\|_e$. This generalizes results of C. L. Olsen.
DOI : 10.4064/sm197-3-5
Keywords: ldots bounded linear operators complex hilbert space there compact operators dots closure joint numerical range n tuple k ldots n k equals joint essential numerical range ldots generalizes corresponding result mathbb there exists compact operator s k generalizes results olsen

Vladimír Müller 1

1 Mathematical Institute Czech Academy of Sciences Žitna 25, 115 67 Praha 1, Czech Republic
@article{10_4064_sm197_3_5,
     author = {Vladim{\'\i}r M\"uller},
     title = {The joint essential numerical range, compact perturbations,
 and the {Olsen} problem},
     journal = {Studia Mathematica},
     pages = {275--290},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2010},
     doi = {10.4064/sm197-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-5/}
}
TY  - JOUR
AU  - Vladimír Müller
TI  - The joint essential numerical range, compact perturbations,
 and the Olsen problem
JO  - Studia Mathematica
PY  - 2010
SP  - 275
EP  - 290
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-5/
DO  - 10.4064/sm197-3-5
LA  - en
ID  - 10_4064_sm197_3_5
ER  - 
%0 Journal Article
%A Vladimír Müller
%T The joint essential numerical range, compact perturbations,
 and the Olsen problem
%J Studia Mathematica
%D 2010
%P 275-290
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-5/
%R 10.4064/sm197-3-5
%G en
%F 10_4064_sm197_3_5
Vladimír Müller. The joint essential numerical range, compact perturbations,
 and the Olsen problem. Studia Mathematica, Tome 197 (2010) no. 3, pp. 275-290. doi: 10.4064/sm197-3-5

Cité par Sources :