Orbits in symmetric spaces, II
Studia Mathematica, Tome 197 (2010) no. 3, pp. 257-274
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Suppose $E$ is fully symmetric Banach function space on $(0,1)$ or $(0,\infty )$ or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on $f\in E$ so that its orbit $\Omega (f)$ is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.
Keywords:
suppose fully symmetric banach function space infty fully symmetric banach sequence space necessary sufficient conditions its orbit omega closed convex hull its extreme points application symmetrically normed ideals compact operators hilbert space
Affiliations des auteurs :
N. J. Kalton 1 ; F. A. Sukochev 2 ; D. Zanin 3
@article{10_4064_sm197_3_4,
author = {N. J. Kalton and F. A. Sukochev and D. Zanin},
title = {Orbits in symmetric spaces, {II}},
journal = {Studia Mathematica},
pages = {257--274},
publisher = {mathdoc},
volume = {197},
number = {3},
year = {2010},
doi = {10.4064/sm197-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-4/}
}
N. J. Kalton; F. A. Sukochev; D. Zanin. Orbits in symmetric spaces, II. Studia Mathematica, Tome 197 (2010) no. 3, pp. 257-274. doi: 10.4064/sm197-3-4
Cité par Sources :