Orbits in symmetric spaces, II
Studia Mathematica, Tome 197 (2010) no. 3, pp. 257-274

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Suppose $E$ is fully symmetric Banach function space on $(0,1)$ or $(0,\infty )$ or a fully symmetric Banach sequence space. We give necessary and sufficient conditions on $f\in E$ so that its orbit $\Omega (f)$ is the closed convex hull of its extreme points. We also give an application to symmetrically normed ideals of compact operators on a Hilbert space.
DOI : 10.4064/sm197-3-4
Keywords: suppose fully symmetric banach function space infty fully symmetric banach sequence space necessary sufficient conditions its orbit omega closed convex hull its extreme points application symmetrically normed ideals compact operators hilbert space

N. J. Kalton 1 ; F. A. Sukochev 2 ; D. Zanin 3

1 Department of Mathematics University of Missouri-Columbia Columbia, MO 65211, U.S.A.
2 School of Mathematics and Statistics University of New South Wales Sydney, NSW 2052, Australia
3 School of Computer Science, Engineering and Mathematics Flinders University Adelaide, SA 5042, Australia
@article{10_4064_sm197_3_4,
     author = {N. J. Kalton and F. A. Sukochev and D. Zanin},
     title = {Orbits in symmetric spaces, {II}},
     journal = {Studia Mathematica},
     pages = {257--274},
     publisher = {mathdoc},
     volume = {197},
     number = {3},
     year = {2010},
     doi = {10.4064/sm197-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-4/}
}
TY  - JOUR
AU  - N. J. Kalton
AU  - F. A. Sukochev
AU  - D. Zanin
TI  - Orbits in symmetric spaces, II
JO  - Studia Mathematica
PY  - 2010
SP  - 257
EP  - 274
VL  - 197
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-4/
DO  - 10.4064/sm197-3-4
LA  - en
ID  - 10_4064_sm197_3_4
ER  - 
%0 Journal Article
%A N. J. Kalton
%A F. A. Sukochev
%A D. Zanin
%T Orbits in symmetric spaces, II
%J Studia Mathematica
%D 2010
%P 257-274
%V 197
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm197-3-4/
%R 10.4064/sm197-3-4
%G en
%F 10_4064_sm197_3_4
N. J. Kalton; F. A. Sukochev; D. Zanin. Orbits in symmetric spaces, II. Studia Mathematica, Tome 197 (2010) no. 3, pp. 257-274. doi: 10.4064/sm197-3-4

Cité par Sources :